山东省枣庄市台儿庄区2022年中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,点从矩形的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( )
A. B. C. D.
2.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为( )
A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y2
3.下列实数中是无理数的是( )
A. B.2﹣2 C.5. D.sin45°
4.下列命题正确的是( )
A.对角线相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
5.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
6.如图,是一个工件的三视图,则此工件的全面积是( )
A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
7.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )
A. 或
B. 或
C. 或
D.
8.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )
A.8 B.10 C.12 D.16
9.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
10.已知是二元一次方程组的解,则m+3n的值是( )
A.4 B.6 C.7 D.8
11.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )
A. B. C.9 D.
12.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是( )
①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)
A.1个 B.2个 C.3个 D.4个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
14.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是_____.
15.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.
16.化简;÷(﹣1)=______.
17.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).
18.写出一个大于3且小于4的无理数:___________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
20.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中a= ,b= ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
21.(6分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)若BC=6,AC=4CE时,求⊙O的半径.
22.(8分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.
23.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.
24.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
25.(10分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
26.(12分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:
(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;
(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;
(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
27.(12分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.
【详解】
由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,
∴矩形的面积为4×8=32,
故选:C.
【点睛】
本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.
2、A
【解析】
分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,
∴y1=−6,y1=−3,
∵−3>−6,
∴y1<y1.
故选A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
3、D
【解析】
A、是有理数,故A选项错误;
B、是有理数,故B选项错误;
C、是有理数,故C选项错误;
D、是无限不循环小数,是无理数,故D选项正确;
故选:D.
4、C
【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
详解:对角线互相平分的四边形是平行四边形,A错误;
对角线相等的平行四边形是矩形,B错误;
对角线互相垂直的平行四边形是菱形,C正确;
对角线互相垂直且相等的平行四边形是正方形;
故选:C.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5、C
【解析】
根据轴对称和中心对称的定义去判断即可得出正确答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故此选项错误.
故选:C.
【点睛】
本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
6、C
【解析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
【详解】
圆锥的底面圆的直径为12cm,高为8cm,
所以圆锥的母线长==10,
所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
故答案选C.
【点睛】
本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
7、B
【解析】
试题解析:如图所示:
分两种情况进行讨论:
当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
故选B.
点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
开口向上,开口向下.
的绝对值越大,开口越小.
8、B
【解析】
根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故选C.
“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.
9、D
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
故选D.
10、D
【解析】
分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.
详解:根据题意,将代入,得:,
①+②,得:m+3n=8,
故选D.
点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.
11、A
【解析】
解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.
点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.
12、C
【解析】
①如图,由平行线等分线段定理(或分线段成比例定理)易得:;
②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;
③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;
④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.
【详解】
解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,
∴,
故 ①正确;
②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,
∵DE=1,OA'=1,
∴S△AED=×1×1=,
∵OE∥AA'∥GB',OA'=A'B',
∴AE=AG,
∴△AED∽△AGB且相似比=1,
∴△AED≌△AGB,
∴S△ABG=,
同理得:G为AC中点,
∴S△ABG=S△BCG=,
∴S△ABC=1,
故 ②正确;
③由②知:△AED≌△AGB,
∴BG=DE=1,
∵BG∥EF,
∴△BGC∽△FEC,
∴,
∴EF=1.即OF=5,
故③正确;
④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,
故④错误;
故选C.
【点睛】
本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
14、k≤.
【解析】
分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.
【详解】
当k=1时,原方程为-x+2=1,
解得:x=2,
∴k=1符合题意;
当k≠1时,有△=[-(2k+1)]2-4k(k+2)≥1,
解得:k≤且k≠1.
综上:k的取值范围是k≤.
故答案为:k≤.
【点睛】
本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键.
15、4m
【解析】
设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.
【详解】
设路灯的高度为x(m),
∵EF∥AD,
∴△BEF∽△BAD,
∴,
即,
解得:DF=x﹣1.8,
∵MN∥AD,
∴△CMN∽△CAD,
∴,
即,
解得:DN=x﹣1.5,
∵两人相距4.7m,
∴FD+ND=4.7,
∴x﹣1.8+x﹣1.5=4.7,
解得:x=4m,
答:路灯AD的高度是4m.
16、-
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式,
,
,
.
故答案为.
【点睛】
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
17、4n﹣1
【解析】
分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形.
【详解】
分别数出图、图、图中的三角形的个数,
图中三角形的个数为;
图中三角形的个数为;
图中三角形的个数为;
可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.
按照这个规律,如果设图形的个数为n,那么其中三角形的个数为.
故答案为.
【点睛】
此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.
18、如等,答案不唯一.
【解析】
本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)12;(3)t=或t=或t=1.
【解析】
试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.
试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,
∴x1+x2=8,
由.
解得:.
∴B(2,0)、C(6,0)
则4m﹣16m+4m+2=0,
解得:m=,
∴该抛物线解析式为:y=;.
(2)可求得A(0,3)
设直线AC的解析式为:y=kx+b,
∵
∴
∴直线AC的解析式为:y=﹣x+3,
要构成△APC,显然t≠6,分两种情况讨论:
当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),
∵P(t,),∴PF=,
∴S△APC=S△APF+S△CPF
=
=
=,
此时最大值为:,
②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),
∵P(t,),∴PM=,
∴S△APC=S△APF﹣S△CPF=
=
=,
当t=8时,取最大值,最大值为:12,
综上可知,当0<t≤8时,△APC面积的最大值为12;
(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,
Q(t,3),P(t,),
①当2<t≤6时,AQ=t,PQ=,
若:△AOB∽△AQP,则:,
即:,
∴t=0(舍),或t=,
若△AOB∽△PQA,则:,
即:,
∴t=0(舍)或t=2(舍),
②当t>6时,AQ′=t,PQ′=,
若:△AOB∽△AQP,则:,
即:,
∴t=0(舍),或t=,
若△AOB∽△PQA,则:,
即:,
∴t=0(舍)或t=1,
∴t=或t=或t=1.
考点:二次函数综合题.
20、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
21、(1)AE与⊙O相切.理由见解析.(2)2.1
【解析】
(1)连接OM,则OM=OB,利用平行的判定和性质得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性质和切线的判定即可得证;
(2)设⊙O的半径为r,则AO=12﹣r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM∽△ABE,根据相似三角形的性质即可求解.
【详解】
解:(1)AE与⊙O相切.
理由如下:
连接OM,则OM=OB,
∴∠OMB=∠OBM,
∵BM平分∠ABC,
∴∠OBM=∠EBM,
∴∠OMB=∠EBM,
∴OM∥BC,
∴∠AMO=∠AEB,
在△ABC中,AB=AC,AE是角平分线,
∴AE⊥BC,
∴∠AEB=90°,
∴∠AMO=90°,
∴OM⊥AE,
∴AE与⊙O相切;
(2)在△ABC中,AB=AC,AE是角平分线,
∴BE=BC,∠ABC=∠C,
∵BC=6,cosC=,
∴BE=3,cos∠ABC=,
在△ABE中,∠AEB=90°,
∴AB===12,
设⊙O的半径为r,则AO=12﹣r,
∵OM∥BC,
∴△AOM∽△ABE,
∴,
∴=,
解得:r=2.1,
∴⊙O的半径为2.1.
22、(1),;(2)证明见解析.
【解析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x1,
∵该方程的一个根为1,∴.解得.
∴a的值为,该方程的另一根为.
(2)∵,
∴不论a取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
23、(1)60°;(2)证明略;(3)
【解析】
(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.
【详解】
(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为==.
【点睛】
本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.
24、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【解析】
(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.
(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.
(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.
【详解】
(1)根据题意得:
y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
自变量x的取值范围是:0<x≤10且x为正整数;
(2)当y=2520时,得﹣10x2+130x+2300=2520,
解得x1=2,x2=11(不合题意,舍去)
当x=2时,30+x=32(元)
答:每件玩具的售价定为32元时,月销售利润恰为2520元.
(3)根据题意得:
y=﹣10x2+130x+2300
=﹣10(x﹣6.5)2+2722.5,
∵a=﹣10<0,
∴当x=6.5时,y有最大值为2722.5,
∵0<x≤10且x为正整数,
∴当x=6时,30+x=36,y=2720(元),
当x=7时,30+x=37,y=2720(元),
答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【点睛】
本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.
25、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
【解析】
试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
(1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
(2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
试题解析:(1)∵抛物线经过点C(0,4),A(4,0),
∴,解得 ,
∴抛物线解析式为y=﹣ x1+x+4;
(1)由(1)可求得抛物线顶点为N(1, ),
如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,
设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得 ,解得 ,
∴直线C′N的解析式为y=x-4 ,
令y=0,解得x= ,
∴点K的坐标为(,0);
(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,
由﹣ x1+x+4=0,得x1=﹣1,x1=4,
∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,
又∵QE∥AC,∴△BQE≌△BAC,
∴ ,即 ,解得EG= ;
∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)
= =-(m-1)1+2 .
又∵﹣1≤m≤4,
∴当m=1时,S△CQE有最大值2,此时Q(1,0);
(4)存在.在△ODF中,
(ⅰ)若DO=DF,∵A(4,0),D(1,0),
∴AD=OD=DF=1.
又在Rt△AOC中,OA=OC=4,
∴∠OAC=45°.
∴∠DFA=∠OAC=45°.
∴∠ADF=90°.
此时,点F的坐标为(1,1).
由﹣ x1+x+4=1,得x1=1+ ,x1=1﹣.
此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);
(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.
由等腰三角形的性质得:OM=OD=1,
∴AM=2.
∴在等腰直角△AMF中,MF=AM=2.
∴F(1,2).
由﹣ x1+x+4=2,得x1=1+,x1=1﹣.
此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);
(ⅲ)若OD=OF,
∵OA=OC=4,且∠AOC=90°.
∴AC=4.
∴点O到AC的距离为1.
而OF=OD=1<1,与OF≥1矛盾.
∴在AC上不存在点使得OF=OD=1.
此时,不存在这样的直线l,使得△ODF是等腰三角形.
综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.
26、(1);(2);(3)一.
【解析】
(1)直接利用概率公式求解;
(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.
【详解】
解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
故答案为;
(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
画树状图为:(用Z表示正确选项,C表示错误选项)
共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
所以小敏顺利通关的概率=;
(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)
共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
由于>,
所以建议小敏在答第一道题时使用“求助”.
【点睛】
本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
27、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【解析】
(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
【详解】
(1)设购进甲种商品x件,购进乙商品y件,
根据题意得:
,
解得:,
答:商店购进甲种商品40件,购进乙种商品60件;
(2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
根据题意列得:
,
解得:20≤a≤22,
∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【点睛】
此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
2024年山东省枣庄市台儿庄区中考数学二模试卷(含解析): 这是一份2024年山东省枣庄市台儿庄区中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省枣庄市台儿庄区中考数学一模试卷(含解析): 这是一份2024年山东省枣庄市台儿庄区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析): 这是一份2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。