|试卷下载
搜索
    上传资料 赚现金
    2022年山东省枣庄市台儿庄区中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022年山东省枣庄市台儿庄区中考数学最后冲刺模拟试卷含解析01
    2022年山东省枣庄市台儿庄区中考数学最后冲刺模拟试卷含解析02
    2022年山东省枣庄市台儿庄区中考数学最后冲刺模拟试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省枣庄市台儿庄区中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022年山东省枣庄市台儿庄区中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
    A.13 B.11或13 C.11 D.12
    2.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
    A. B. C. D.
    3.在下列函数中,其图象与x轴没有交点的是(  )
    A.y=2x B.y=﹣3x+1 C.y=x2 D.y=
    4.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
    A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
    5.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )

    A.50° B.60° C.70° D.80°
    6.边长相等的正三角形和正六边形的面积之比为( )
    A.1∶3 B.2∶3 C.1∶6 D.1∶
    7.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为(  )

    A.5cm B.12cm C.16cm D.20cm
    8.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
    A. B. C. D.
    9.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
    册数
    0
    1
    2
    3
    4
    人数
    4
    12
    16
    17
    1
    关于这组数据,下列说法正确的是(  )
    A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
    10.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )

    A.(﹣) B.(﹣) C.(﹣) D.(﹣)
    11.下列代数运算正确的是(  )
    A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3•x2=x5
    12.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )

    A.4b+2c B.0 C.2c D.2a+2c
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.
    14.不等式组的解集是_____.
    15.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
    16.分解因式:=    .
    17.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.

    18.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?

    20.(6分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.

    21.(6分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

    22.(8分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.
    求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长
    23.(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.
    (1)若点A′落在矩形的对角线OB上时,OA′的长=   ;
    (2)若点A′落在边AB的垂直平分线上时,求点D的坐标;
    (3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).

    24.(10分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.

    25.(10分)阅读材料:各类方程的解法
    求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
    用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

    26.(12分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.

    并整理分析数据如下表:

    平均成绩/环
    中位数/环
    众数/环
    方差


    7
    7
    1.2

    7

    8

    (1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    27.(12分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:
    (1)该公司有哪几种生产方案?
    (2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?
    (3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题解析:x2-8x+15=0,
    分解因式得:(x-3)(x-5)=0,
    可得x-3=0或x-5=0,
    解得:x1=3,x2=5,
    若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
    若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
    综上,△ABC的周长为11或1.
    故选B.
    考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
    2、C
    【解析】
    分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.
    解答:解:根据题意:2500000=2.5×1.
    故选C.
    3、D
    【解析】
    依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.
    【详解】
    A.正比例函数y=2x与x轴交于(0,0),不合题意;
    B.一次函数y=-3x+1与x轴交于(,0),不合题意;
    C.二次函数y=x2与x轴交于(0,0),不合题意;
    D.反比例函数y=与x轴没有交点,符合题意;
    故选D.
    4、B
    【解析】
    先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
    【详解】
    解:设直线AB的解析式为y=mx+n.
    ∵A(−2,0),B(0,1),
    ∴ ,
    解得 ,
    ∴直线AB的解析式为y=2x+1.
    将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
    再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
    所以直线l的表达式是y=2x−2.
    故选:B.
    【点睛】
    本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
    5、C
    【解析】
    解:∵OM=60海里,ON=80海里,MN=100海里,
    ∴OM2+ON2=MN2,
    ∴∠MON=90°,
    ∵∠EOM=20°,
    ∴∠NOF=180°﹣20°﹣90°=70°.
    故选C.
    【点睛】
    本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
    6、C
    【解析】
    解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.

    连接OA、OB,过O作OD⊥AB.

    ∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1, ∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.
    点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.
    7、D
    【解析】
    解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
    【详解】
    延长AB、DC相交于F,则BFC构成直角三角形,

    运用勾股定理得:
    BC2=(15-3)2+(1-4)2=122+162=400,
    所以BC=1.
    则剪去的直角三角形的斜边长为1cm.
    故选D.
    【点睛】
    本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
    8、C
    【解析】
    画树状图得:

    ∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
    ∴两次抽取的卡片上的数字之积为正偶数的概率是:.
    故选C.
    【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
    9、A
    【解析】
    试题解析:察表格,可知这组样本数据的平均数为:
    (0×4+1×12+2×16+3×17+4×1)÷50=;
    ∵这组样本数据中,3出现了17次,出现的次数最多,
    ∴这组数据的众数是3;
    ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
    ∴这组数据的中位数为2,
    故选A.
    考点:1.方差;2.加权平均数;3.中位数;4.众数.
    10、A
    【解析】
    直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
    【详解】
    过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,

    由题意可得:∠C1NO=∠A1MO=90°,
    ∠1=∠2=∠1,
    则△A1OM∽△OC1N,
    ∵OA=5,OC=1,
    ∴OA1=5,A1M=1,
    ∴OM=4,
    ∴设NO=1x,则NC1=4x,OC1=1,
    则(1x)2+(4x)2=9,
    解得:x=±(负数舍去),
    则NO=,NC1=,
    故点C的对应点C1的坐标为:(-,).
    故选A.
    【点睛】
    此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
    11、D
    【解析】
    分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.
    【详解】
    解:A. (x+1)2=x2+2x+1,故A错误;
    B. (x3)2=x6,故B错误;
    C. (2x)2=4x2,故C错误.
    D. x3•x2=x5,故D正确.
    故本题选D.
    【点睛】
    本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.
    12、A
    【解析】
    由数轴上点的位置得:b|c|>|a|,
    ∴a+c>0,a−2b>0,c+2b<0,
    则原式=a+c−a+2b+c+2b=4b +2c.
    故选:B.
    点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论.
    【详解】
    设这些书有x本,
    由题意得,,
    解得:x=1,
    答:这些书有1本.
    故答案为:1.
    【点睛】
    本题考查了比例的性质,正确的列出比例式是解题的关键.
    14、2<x≤1
    【解析】
    本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.
    【详解】
    由①得x>2,
    由②得x≤1,
    ∴不等式组的解集为2<x≤1.
    故答案为:2<x≤1.
    【点睛】
    此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    15、y3<y1<y1
    【解析】
    根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.
    【详解】
    解:k=-1<0,
    ∴在每个象限,y随x的增大而增大,
    ∵-3<-1<0,
    ∴0<y1<y1.
    又∵1>0
    ∴y3<0
    ∴y3<y1<y1
    故答案为:y3<y1<y1
    【点睛】
    本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.
    16、
    【解析】
    试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
    先提取公因式后继续应用平方差公式分解即可:。
    17、或
    【解析】
    根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+.
    【详解】
    如图①,当四边形ABCE为平行四边形时,
    作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.
    ∵AB=BC,
    ∴四边形ABCE是菱形.
    ∵∠BAD=∠BCD=90°,∠ABC=150°,
    ∴∠ADC=30°,∠BAN=∠BCE=30°,
    ∴∠NAD=60°,
    ∴∠AND=90°.
    设BT=x,则CN=x,BC=EC=2x.
    ∵四边形ABCE面积为2,
    ∴EC·BT=2,即2x×x=2,解得x=1,
    ∴AE=EC=2,EN= ,
    ∴AN=AE+EN=2+ ,
    ∴CD=AD=2AN=4+2.

    如图②,当四边形BEDF是平行四边形,
    ∵BE=BF,
    ∴平行四边形BEDF是菱形.
    ∵∠A=∠C=90°,∠ABC=150°,
    ∴∠ADB=∠BDC=15°.
    ∵BE=DE,
    ∴∠EBD=∠ADB=15°,
    ∴∠AEB=30°.
    设AB=y,则DE=BE=2y,AE=y.
    ∵四边形BEDF的面积为2,
    ∴AB·DE=2,即2y2=2,解得y=1,
    ∴AE=,DE=2,
    ∴AD=AE+DE=2+.
    综上所述,CD的值为4+2或2+.
    【点睛】
    考核知识点:平行四边形的性质,菱形判定和性质.
    18、﹣24
    【解析】
    分析:
    如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.
    详解:
    如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,
    ∵四边形ABCO是菱形,
    ∴AB∥CO,AO∥BC,
    ∵DE∥AO,
    ∴四边形AOED和四边形DECB都是平行四边形,
    ∴S△AOD=S△DOE,S△BCD=S△CDE,
    ∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,
    ∵tan∠AOC=,CF=4x,
    ∴OF=3x,
    ∴在Rt△COF中,由勾股定理可得OC=5x,
    ∴OA==OC=5x,
    ∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,
    ∴OF=,CF=,
    ∴点C的坐标为,
    ∵点C在反比例函数的图象上,
    ∴k=.
    故答案为:-24.

    点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、R= 或R=
    【解析】
    解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
    考点:圆与直线的位置关系.
    20、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
    【解析】
    试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
    (1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
    (3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
    试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
    (1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
    (3)由图可得,不等式的解集为:x<﹣4或0<x<1.

    考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
    21、(1)详见解析;(2)详见解析
    【解析】
    (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;
    (2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DCE,
    ∵点E为AD的中点,
    ∴AE=DE,
    在△AEF和△DEC中,

    ∴△AEF≌△DEC(AAS),
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD,
    ∴D是BC的中点;
    (2)若AB=AC,则四边形AFBD是矩形.理由如下:
    ∵△AEF≌△DEC,
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD;
    ∵AF∥BD,AF=BD,
    ∴四边形AFBD是平行四边形,
    ∵AB=AC,BD=CD,
    ∴∠ADB=90°,
    ∴平行四边形AFBD是矩形.
    【点睛】
    本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
    22、(1)见解析;(2)PE=4.
    【解析】
    (1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;
    (2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.
    【详解】
    解:(1)证明:∵BC是⊙O的直径,

    ∴∠BDC=90°,∴∠BCD+∠B=90°,
    ∵∠ACB=90°,
    ∴∠BCD+∠ACD=90°,
    ∴∠ACD=∠B,
    ∵∠DEC=∠B,
    ∴∠ACD=∠DEC
    (2)证明:连结OE

    ∵E为BD弧的中点.
    ∴∠DCE=∠BCE
    ∵OC=OE
    ∴∠BCE=∠OEC
    ∴∠DCE=∠OEC
    ∴OE∥CD
    ∴△POE∽△PCD,

    ∵PB=BO,DE=2
    ∴PB=BO=OC


    ∴PE=4
    【点睛】
    本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.
    23、(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
    【解析】
    分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;
    (Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;
    (Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.
    详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.
    故答案为1;

    (Ⅱ)如图2,连接AA′.
    ∵点A′落在线段AB的中垂线上,∴BA=AA′.
    ∵△BDA′是由△BDA折叠得到的,
    ∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,
    ∴AB=A′B=AA′,∴△BAA′是等边三角形,
    ∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,
    ∴AD=ABtan∠ABD=1tan30°=2,
    ∴OD=OA﹣AD=8﹣2,
    ∴点D(8﹣2,0);

    (Ⅲ)①如图3,当点D在OA上时.
    由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
    ∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,
    ∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,
    由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,
    则=,即=,
    解得:DN=3﹣5,
    则OD=ON+DN=4+3﹣5=3﹣1,
    ∴D(3﹣1,0);

    ②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
    ∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,
    则MC=BN==2,∴MO=MC+OC=2+1,
    由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,
    则=,即=,
    解得:ME=,则OE=MO﹣ME=1+.
    ∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,
    ∴△DOE∽△A′ME,
    ∴=,即=,
    解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).
    综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).

    点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.
    24、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.
    【解析】
    (1)根据图1找出8、9、10℃的天数,然后补全统计图即可;
    (2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;
    (3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.
    【详解】
    (1)由图1可知,8℃有2天,9℃有0天,10℃有2天,
    补全统计图如图;

    (2)根据条形统计图,7℃出现的频率最高,为3天,
    所以,众数是7;
    按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,
    所以,中位数为(7+8)=7.5;
    平均数为(6×2+7×3+8×2+10×2+11)=×80=8,
    所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],
    =(8+3+0+8+9),
    =×28,
    =2.8;
    (3)6℃的度数,×360°=72°,
    7℃的度数,×360°=108°,
    8℃的度数,×360°=72°,
    10℃的度数,×360°=72°,
    11℃的度数,×360°=36°,
    作出扇形统计图如图所示.

    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.
    25、 (1)-2,1;(2)x=3;(3)4m.
    【解析】
    (1)因式分解多项式,然后得结论;
    (2)两边平方,把无理方程转化为整式方程,求解,注意验根;
    (3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,
    【详解】
    解:(1),


    所以或或
    ,,;
    故答案为,1;
    (2),
    方程的两边平方,得



    ,,
    当时,,
    所以不是原方程的解.
    所以方程的解是;
    (3)因为四边形是矩形,
    所以,
    设,则
    因为,



    两边平方,得
    整理,得
    两边平方并整理,得

    所以.
    经检验,是方程的解.
    答:的长为.
    【点睛】
    考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.
    26、(1)a=7,b=7.5,c=4.2;(2)见解析.
    【解析】
    (1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
    (2)结合平均数和中位数、众数、方差三方面的特点进行分析.
    【详解】
    (1)甲的平均成绩a==7(环),
    ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击成绩的中位数b==7.5(环),
    其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
    =×(16+9+1+3+4+9)
    =4.2;
    (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
    综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
    【点睛】
    本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
    27、(1)共有三种方案,分别为①A型号16辆时, B型号24辆;②A型号17辆时,B型号23辆;③A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
    【解析】
    (1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;
    (2)根据“利润=售价-成本”列出一次函数的解析式解答;
    (3)根据(2)中方案设计计算.
    【详解】
    (1)设生产A型号x辆,则B型号(40-x)辆
    153634x+42(40-x)1552
    解得,x可以取值16,17,18共有三种方案,分别为
    A型号16辆时, B型号24辆
    A型号17辆时,B型号23辆
    A型号18辆时,B型号22辆
    (2)设总利润W万元
    则W=
    =

    w随x的增大而减小
    当时,万元
    (3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
    【点睛】
    本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.

    相关试卷

    2024年山东省枣庄市台儿庄区中考数学二模试卷(含解析): 这是一份2024年山东省枣庄市台儿庄区中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省枣庄市台儿庄区中考数学一模试卷(含解析): 这是一份2024年山东省枣庄市台儿庄区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析): 这是一份2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map