终身会员
搜索
    上传资料 赚现金

    2022年山东省枣庄市台儿庄区重点中学中考数学模拟试题含解析

    立即下载
    加入资料篮
    2022年山东省枣庄市台儿庄区重点中学中考数学模拟试题含解析第1页
    2022年山东省枣庄市台儿庄区重点中学中考数学模拟试题含解析第2页
    2022年山东省枣庄市台儿庄区重点中学中考数学模拟试题含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省枣庄市台儿庄区重点中学中考数学模拟试题含解析

    展开

    这是一份2022年山东省枣庄市台儿庄区重点中学中考数学模拟试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在实数,有理数有等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:
    (1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧
    (2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是(  )
    A.命题(1)与命题(2)都是真命题
    B.命题(1)与命题(2)都是假命题
    C.命题(1)是假命题,命题(2)是真命题
    D.命题(1)是真命题,命题(2)是假命题
    2.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )

    A.90° B.135° C.270° D.315°
    3.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).

    A. B. C. D.
    4.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的( )

    A.外心 B.内心 C.三条中线的交点 D.三条高的交点
    5.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是(  )

    A.3 B.3.5 C.4 D.5
    6.在实数,有理数有( )
    A.1个 B.2个 C.3个 D.4个
    7.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
    居民(户)
    1
    2
    3
    4
    月用电量(度/户)
    30
    42
    50
    51
    那么关于这10户居民月用电量(单位:度),下列说法错误的是(  )
    A.中位数是50 B.众数是51 C.方差是42 D.极差是21
    8.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=(  )

    A.90°-α B.90°+ α C. D.360°-α
    9.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
    A. B.x(x+1)=1980
    C.2x(x+1)=1980 D.x(x-1)=1980
    10.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.因式分解:4ax2﹣4ay2=_____.
    12.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.

    13.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数y=(k≠0)的图象恰好经过点B'、M,则k=_____.

    14.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.

    15.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米

    16.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
    17.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD的相似比为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
    19.(5分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
    20.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.

    21.(10分) “春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:
    (1)本次参加抽样调查的居民人数是   人;
    (2)将图 ①②补充完整;( 直接补填在图中)
    (3)求图②中表示“A”的圆心角的度数;
    (4)若居民区有8000人,请估计爱吃D汤圆的人数.

    22.(10分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
    (1)甲、乙两种套房每套提升费用各多少万元?
    (2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
    (3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
    23.(12分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

    (1)求证:△ABG≌△C′DG;
    (2)求tan∠ABG的值;
    (3)求EF的长.
    24.(14分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.
    (1)∵P(a,b)在y=上, ∴a和b同号,所以对称轴在y轴左侧,
    ∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.
    (2)∵函数y=的所有“派生函数”为y=ax2+bx, ∴x=0时,y=0,
    ∴所有“派生函数”为y=ax2+bx经过原点,
    ∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.
    考点:(1)命题与定理;(2)新定义型
    2、C
    【解析】
    根据四边形的内角和与直角三角形中两个锐角关系即可求解.
    【详解】
    解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,
    ∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.
    故选:C.
    【点睛】
    此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.
    3、B
    【解析】
    试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
    考点:3.线段垂直平分线性质;3.轴对称作图.
    4、B
    【解析】
    利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.
    【详解】
    解:如图,过点作于,于,于.

    图1

    (夹在平行线间的距离相等).
    如图:过点作于,作于E,作于.

    由题意可知: ,,,
    ∴ ,
    ∴图中的点是三角形三个内角的平分线的交点,
    点是的内心,
    故选B.
    【点睛】
    本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.
    5、A
    【解析】
    根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
    【详解】
    解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
    AP≥AB,
    AP≥3.5,
    故选:A.
    【点睛】
    本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
    6、D
    【解析】
    试题分析:根据有理数是有限小数或无限循环小数,可得答案:
    是有理数,故选D.
    考点:有理数.
    7、C
    【解析】
    试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
    平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
    中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
    故选C.
    考点:1.方差;2.中位数;3.众数;4.极差.
    8、C
    【解析】
    试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
    ∵PB和PC分别为∠ABC、∠BCD的平分线,
    ∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
    则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
    故选C.
    考点:1.多边形内角与外角2.三角形内角和定理.
    9、D
    【解析】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
    【详解】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,
    ∴全班共送:(x﹣1)x=1980,
    故选D.
    【点睛】
    此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
    10、A
    【解析】
    连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
    【详解】
    连接BD,
    ∵四边形ABCD为矩形,
    ∴BD过圆心O,
    ∵∠BDC=∠BPC(圆周角定理)
    ∴cos∠BDC=cos∠BPC
    ∵BD为直径,
    ∴∠BCD=90°,
    ∵=,
    ∴设DC为x,
    则BC为2x,
    ∴BD===x,
    ∴cos∠BDC===,
    ∵cos∠BDC=cos∠BPC,
    ∴cos∠BPC=.
    故答案选A.

    【点睛】
    本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4a(x﹣y)(x+y)
    【解析】
    首先提取公因式4a,再利用平方差公式分解因式即可.
    【详解】
    4ax2-4ay2=4a(x2-y2)
    =4a(x-y)(x+y).
    故答案为4a(x-y)(x+y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    12、3
    【解析】
    试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
    考点:3.等腰三角形的性质;3.垂直平分线的性质.
    13、12
    【解析】
    根据题意可以求得点B'的横坐标,然后根据反比例函数y=(k≠0)的图象恰好经过点B'、M,从而可以求得k的值.
    【详解】
    解:作B′C⊥y轴于点C,如图所示,

    ∵∠BAB′=90°,∠AOB=90°,AB=AB′,
    ∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,
    ∴∠ABO=∠BA′C,
    ∴△ABO≌△BA′C,
    ∴AO=B′C,
    ∵点A(0,6),
    ∴B′C=6,
    设点B′的坐标为(6,),
    ∵点M是线段AB'的中点,点A(0,6),
    ∴点M的坐标为(3,),
    ∵反比例函数y=(k≠0)的图象恰好经过点M,
    ∴=,
    解得,k=12,
    故答案为:12.
    【点睛】
    本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
    14、
    【解析】
    【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
    【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
    以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
    OA2==4,点A2的坐标为(4,0),
    这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
    以此类推便可求出点A2019的坐标为(22019,0),
    则的长是,
    故答案为:.
    【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
    15、
    【解析】
    由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就
    是直线y=8与抛物线两交点的横坐标差的绝对值.
    故有,
    即,,.
    所以两盏警示灯之间的水平距离为:
    16、﹣2
    【解析】
    ∵反比例函数的图象过点A(m,3),
    ∴,解得.
    17、3:1.
    【解析】
    ∵△AOB与△COD关于点O成位似图形,
    ∴△AOB∽△COD,
    则△AOB与△COD的相似比为OB:OD=3:1,
    故答案为3:1 (或).

    三、解答题(共7小题,满分69分)
    18、﹣x+1,2.
    【解析】
    先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
    【详解】
    原式=(x﹣2)÷(﹣)
    =(x﹣2)÷
    =(x﹣2)•
    =﹣x+1,
    当x=﹣1时,原式=1+1=2.
    【点睛】
    本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
    19、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
    【解析】
    (1)证明:∵CF∥AB,
    ∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
    ∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
    (2)四边形BDCF是矩形.
    证明:由(1)知DB=CF,又DB∥CF,
    ∴四边形BDCF为平行四边形.
    ∵AC=BC,AD=DB,∴CD⊥AB.
    ∴四边形BDCF是矩形.
    20、证明见解析.
    【解析】
    由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
    证明:∵BE∥DF,∴∠ABE=∠D,
    在△ABE和△FDC中,
    ∠ABE=∠D,AB=FD,∠A=∠F
    ∴△ABE≌△FDC(ASA),
    ∴AE=FC.
    “点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
    21、(1)600;(2)120人,20%;30%;(3)108°(4)爱吃D汤圆的人数约为3200人
    【解析】
    试题分析:
    (1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为60÷10%=600(人);
    (2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120÷600×100%=20%,喜欢A类的占总人数的百分比为:180÷600×100%=30%,由此即可将统计图补充完整;
    (3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:360°×30%=108°;
    (4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:8000×40%=3200(人);
    试题解析:
    (1)本次参加抽样调查的居民的人数是:60÷10%=600(人);
    故答案为600;
    (2)由题意得:C的人数为600﹣(180+60+240)=600﹣480=120(人),C的百分比为120÷600×100%=20%;A的百分比为180÷600×100%=30%;
    将两幅统计图补充完整如下所示:

    (3)根据题意得:360°×30%=108°,
    ∴图②中表示“A”的圆心角的度数108°;
    (4)8000×40%=3200(人),
    即爱吃D汤圆的人数约为3200人.
    22、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.
    【解析】
    试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;
    (2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;
    (3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.
    (1)设甲种套房每套提升费用为x万元,依题意,

    解得:x=25
    经检验:x=25符合题意,
    x+3=28;
    答:甲,乙两种套房每套提升费用分别为25万元,28万元.
    (2)设甲种套房提升套,那么乙种套房提升(m-48)套,
    依题意,得
    解得:48≤m≤50
    即m=48或49或50,所以有三种方案分别
    是:方案一:甲种套房提升48套,乙种套房提升32套.
    方案二:甲种套房提升49套,乙种套房提升1.
    套方案三:甲种套房提升50套,乙种套房提升30套.
    设提升两种套房所需要的费用为W.

    所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:

    当a=3时,三种方案的费用一样,都是2240万元.
    当a>3时,取m=48时费用W最省.
    当0<a<3时,取m=50时费用最省.
    考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.
    23、(1)证明见解析(2)7/24(3)25/6
    【解析】(1)证明:∵△BDC′由△BDC翻折而成,
    ∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
    在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
    ∴△ABG≌△C′DG(ASA)。
    (2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
    设AG=x,则GB=1﹣x,
    在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
    ∴。
    (3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
    ∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
    ∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
    ∴EF=EH+HF=。
    (1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
    (2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
    (3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
    24、 (1);
    (2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
    (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
    【解析】
    (1)根据销售额=销售量×销售价单x,列出函数关系式.
    (2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
    (3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
    【详解】
    解:(1)由题意得:,
    ∴w与x的函数关系式为:.
    (2),
    ∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
    答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
    (3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
    ∵3>28,∴x2=3不符合题意,应舍去.
    答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.

    相关试卷

    2024年山东省枣庄市台儿庄区中考数学二模试卷(含解析):

    这是一份2024年山东省枣庄市台儿庄区中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省枣庄市台儿庄区中考数学一模试卷(含解析):

    这是一份2024年山东省枣庄市台儿庄区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析):

    这是一份2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map