2022届山东省庆云县联考中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列多边形中,内角和是一个三角形内角和的4倍的是( )
A.四边形 B.五边形 C.六边形 D.八边形
2.下列运算正确的是( )
A.a2•a3=a6 B.a3+a2=a5 C.(a2)4=a8 D.a3﹣a2=a
3.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )
A.3 B.4 C.5 D.6
4.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )
A. B. C. D.
5.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为( )
A.8 B.6 C.12 D.10
6.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
A.20% B.11% C.10% D.9.5%
7.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是( )
A.40° B.50° C.60° D.140°
8.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是( )
A. B.
C. D.
9.下列运算正确的是( )
A.5a+2b=5(a+b) B.a+a2=a3
C.2a3•3a2=6a5 D.(a3)2=a5
10.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
11.计算2a2+3a2的结果是( )
A.5a4 B.6a2 C.6a4 D.5a2
12.若55+55+55+55+55=25n,则n的值为( )
A.10 B.6 C.5 D.3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.
14.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是____________.
15.如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.
16.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)
17.分解因式:4m2﹣16n2=_____.
18.数据5,6,7,4,3的方差是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
20.(6分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.
21.(6分)计算:.
22.(8分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.
求证:FC∥AB.
23.(8分)计算:(-)-2 – 2()+
24.(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
25.(10分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
26.(12分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。
27.(12分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
利用多边形的内角和公式列方程求解即可
【详解】
设这个多边形的边数为n.
由题意得:(n﹣2)×180°=4×180°.
解得:n=1.
答:这个多边形的边数为1.
故选C.
【点睛】
本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.
2、C
【解析】
根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.
【详解】
A、a2•a3=a5,故原题计算错误;
B、a3和a2不是同类项,不能合并,故原题计算错误;
C、(a2)4=a8,故原题计算正确;
D、a3和a2不是同类项,不能合并,故原题计算错误;
故选:C.
【点睛】
此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.
3、B
【解析】
分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.
4、C
【解析】
试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.
5、C
【解析】
由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.
【详解】
∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
∴PA=PB=6,AC=EC,BD=ED,
∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,
即△PCD的周长为12,
故选:C.
【点睛】
本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.
6、C
【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
【详解】
解:设二,三月份平均每月降价的百分率为.
根据题意,得=1.
解得,(不合题意,舍去).
答:二,三月份平均每月降价的百分率为10%
【点睛】
本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
7、A
【解析】
试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
解:∵DB⊥BC,∠2=50°,
∴∠3=90°﹣∠2=90°﹣50°=40°,
∵AB∥CD,
∴∠1=∠3=40°.
故选A.
8、A
【解析】
根据题意,将运动过程分成两段.分段讨论求出解析式即可.
【详解】
∵BD=2,∠B=60°,
∴点D到AB距离为,
当0≤x≤2时,
y=;
当2≤x≤4时,y=.
根据函数解析式,A符合条件.
故选A.
【点睛】
本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
9、C
【解析】
直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.
【详解】
A、5a+2b,无法计算,故此选项错误;
B、a+a2,无法计算,故此选项错误;
C、2a3•3a2=6a5,故此选项正确;
D、(a3)2=a6,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.
10、A
【解析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
11、D
【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
【详解】
2a2+3a2=5a2.
故选D.
【点睛】
本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
12、D
【解析】
直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
【详解】
解:∵55+55+55+55+55=25n,
∴55×5=52n,
则56=52n,
解得:n=1.
故选D.
【点睛】
此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
过点作于,根据三角形的性质及三角形内角和定理可计算
再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
【详解】
如图,过点作于,
∵,
∴.
∵将绕点逆时针旋转,使点落在点处,此时点落在点处,
∴
∵
∴
在中,∵
∴
∴,
在中,∵,
∴,
∴.
故答案为.
【点睛】
本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
14、15°
【解析】
分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC的度数.
详解:∵AB=AC,∠BAC=50°, ∴∠ABC=∠ACB=(180°-50°)=65°,
∵MN为AB的中垂线, ∴∠ABD=∠BAC=50°, ∴∠DBC=65°-50°=15°.
点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.4
15、
【解析】
分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.
详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为.
故答案为.
点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.
16、=
【解析】
探究规律后,写出第n个等式即可求解.
【详解】
解:
…
则第n个等式为
故答案为:
【点睛】
本题主要考查二次根式的应用,找到规律是解题的关键.
17、4(m+2n)(m﹣2n).
【解析】
原式提取4后,利用平方差公式分解即可.
【详解】
解:原式=4( ).
故答案为
【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
18、1
【解析】
先求平均数,再根据方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]计算即可.
【详解】
解:∵=(5+6+7+4+3)÷5=5,
∴数据的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.
故答案为:1.
考点:方差.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、解:(1) yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
【详解】
解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
yB=10×30+3(10x﹣20)=30x+240;
(2)当yA=yB时,27x+270=30x+240,得x=10;
当yA>yB时,27x+270>30x+240,得x<10;
当yA<yB时,27x+270<30x+240,得x>10
∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
(3)由题意知x=15,15>10,
∴选择A超市,yA=27×15+270=675(元),
先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
(10×15﹣20)×3×0.9=351(元),
共需要费用10×30+351=651(元).
∵651元<675元,
∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【点睛】
本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.
20、40%
【解析】
先设第次降价的百分率是x,则第一次降价后的价格为500(1-x)元,第二次降价后的价格为500(1-2x),根据两次降价后的价格是240元建立方程,求出其解即可.
【详解】
第一次降价的百分率为x,则第二次降价的百分率为2x,
根据题意得:500(1﹣x)(1﹣2x)=240,
解得x1=0.2=20%,x2=1.3=130%.
则第一次降价的百分率为20%,第二次降价的百分率为40%.
【点睛】
本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.
21、
【解析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
【详解】
原式=9﹣2+1﹣2=.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
22、答案见解析
【解析】
利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.
【详解】
解:∵E是AC的中点,∴AE=CE.
在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.
【点睛】
本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.
23、0
【解析】
本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式.
【点睛】
本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.
24、 (1);(2).
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
【详解】
解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
故答案为:;
(2)画树状图为:
共有6种等可能的结果数,其中乙摸到白球的结果数为2,
所以乙摸到白球的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
25、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.
【解析】
(1)根据题意得方程求解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;
(3)由题意得不等式,即可得到结论.
【详解】
解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
x(31-2x)=72,即x2-15x+36=1.
解得x1=3,x2=2.
又∵31-2x≤3,即x≥6,
∴x=2
(2)依题意,得8≤31-2x≤3.解得6≤x≤4.
面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
①当x=时,S有最大值,S最大=;
②当x=4时,S有最小值,S最小=4×(31-22)=5.
(3)令x(31-2x)=41,得x2-15x+51=1.
解得x1=5,x2=1
∴x的取值范围是5≤x≤4.
26、(1); (2);(3)
【解析】
(1)联立两直线解析式,求出交点P坐标即可;
(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
【详解】
解:(1)联立得:,解得:;
∴P的坐标为;
(2)分两种情况考虑:
当时,由F坐标为(a,0),得到OF=a,
把E横坐标为a,代入得:即
此时
当时,重合的面积就是梯形面积,
F点的横坐标为a,所以E点纵坐标为
M点横坐标为:-3a+12,
∴
所以;
(3)令中的y=0,解得:x=4,则A的坐标为(4,0)
则AP= ,则PM=2
又∵OP=
∴点P向左平移3个单位在向下平移可以得到M1
点P向右平移3个单位在向上平移可以得到M2
∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
A向右平移3个单位在向上平移可以得到 Q1(7,)
所以,存在Q点,且坐标是
【点睛】
本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
27、(1)(m,2m﹣2);(2)S△ABC =﹣;(3)m的值为或10+2.
【解析】
分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;
(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;
(3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.
详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,
∴抛物线的顶点坐标为(m,2m﹣2),
故答案为(m,2m﹣2);
(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,
∵AB∥x轴,且AB=1,
∴点B的坐标为(m+2,1a+2m﹣2),
∵∠ABC=132°,
∴设BD=t,则CD=t,
∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),
∵点C在抛物线y=a(x﹣m)2+2m﹣2上,
∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,
整理,得:at2+(1a+1)t=0,
解得:t1=0(舍去),t2=﹣,
∴S△ABC=AB•CD=﹣;
(3)∵△ABC的面积为2,
∴﹣=2,
解得:a=﹣,
∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.
分三种情况考虑:
①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
整理,得:m2﹣11m+39=0,
解得:m1=7﹣(舍去),m2=7+(舍去);
②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;
③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
整理,得:m2﹣20m+60=0,
解得:m3=10﹣2(舍去),m1=10+2.
综上所述:m的值为或10+2.
点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.
山东省德州临邑县联考2021-2022学年中考数学全真模拟试题含解析: 这是一份山东省德州临邑县联考2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,-10-4的结果是,的算术平方根为,如果,那么代数式的值是,五名女生的体重等内容,欢迎下载使用。
2022年山东省滨州沾化区六校联考中考数学全真模拟试卷含解析: 这是一份2022年山东省滨州沾化区六校联考中考数学全真模拟试卷含解析,共19页。试卷主要包含了下列计算错误的是等内容,欢迎下载使用。
2022届山东省烟台芝罘区六校联考中考数学全真模拟试卷含解析: 这是一份2022届山东省烟台芝罘区六校联考中考数学全真模拟试卷含解析,共21页。试卷主要包含了如图所示的几何体的左视图是等内容,欢迎下载使用。