终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省徐州市区联校2021-2022学年中考四模数学试题含解析

    立即下载
    加入资料篮
    江苏省徐州市区联校2021-2022学年中考四模数学试题含解析第1页
    江苏省徐州市区联校2021-2022学年中考四模数学试题含解析第2页
    江苏省徐州市区联校2021-2022学年中考四模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省徐州市区联校2021-2022学年中考四模数学试题含解析

    展开

    这是一份江苏省徐州市区联校2021-2022学年中考四模数学试题含解析,共19页。试卷主要包含了关于二次函数,下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算正确的是(  )
    A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
    C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
    2.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )
    A.1.2(1+x)=2.5
    B.1.2(1+2x)=2.5
    C.1.2(1+x)2=2.5
    D.1.2(1+x)+1.2(1+x)2=2.5
    3.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是(  )

    A.1 B.3 C.4 D.5
    4.关于二次函数,下列说法正确的是( )
    A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧
    C.当时,的值随值的增大而减小 D.的最小值为-3
    5.下列汽车标志中,不是轴对称图形的是( )
    A. B. C. D.
    6.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为(  )

    A.6 B.7 C.8 D.10
    7.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()

    A.米2 B.米2 C.米2 D.米2
    8.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是(  )
    A. B. C. D.
    9.下列计算正确的是(  )
    A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣6
    10.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为( )

    A.60° B.65° C.70° D.75°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.不等式组的解集是_____.
    12.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.

    13.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.
    14.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)

    15.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.

    16.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于________.

    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
    拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.

    18.(8分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
    (1)证明:∠C=∠D;
    (2)若∠BEF=140°,求∠C的度数;
    (3)若EF=2,tanB=3,求CE•CG的值.

    19.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
    20.(8分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)

    21.(8分)如图已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写做法)

    22.(10分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

    请根据以上信息回答:
    (1)本次参加抽样调查的居民有多少人?
    (2)将两幅不完整的图补充完整;
    (3)若居民区有8000人,请估计爱吃D粽的人数;
    (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
    23.(12分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
    求证:四边形是菱形若,,求四边形的面积
    24.已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).
    (1)求证:方程有两个不相等的实数根;
    (2)若方程的两个实数根都是整数,求k的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    先根据同底数幂的乘法法则进行运算即可。
    【详解】
    A.;故本选项错误;
    B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
    C.;故本选项错误;
    D. 不是同类项不能合并; 故本选项错误;
    故选B.
    【点睛】
    先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
    2、C
    【解析】
    试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:
    1.2(1+x)2=2.5,
    故选C.
    3、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    【点睛】
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
    4、D
    【解析】
    分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.
    详解:∵y=2x2+4x-1=2(x+1)2-3,
    ∴当x=0时,y=-1,故选项A错误,
    该函数的对称轴是直线x=-1,故选项B错误,
    当x<-1时,y随x的增大而减小,故选项C错误,
    当x=-1时,y取得最小值,此时y=-3,故选项D正确,
    故选D.
    点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
    5、C
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、是轴对称图形,故错误;
    B、是轴对称图形,故错误;
    C、不是轴对称图形,故正确;
    D、是轴对称图形,故错误.
    故选C.
    【点睛】
    本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
    6、C
    【解析】
    ∵∠ACB=90°,D为AB的中点,AB=6,
    ∴CD=AB=1.
    又CE=CD,
    ∴CE=1,
    ∴ED=CE+CD=2.
    又∵BF∥DE,点D是AB的中点,
    ∴ED是△AFB的中位线,
    ∴BF=2ED=3.
    故选C.
    7、C
    【解析】
    连接OD,
    ∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.
    ∵∠AOB=90°,CD∥OB,∴CD⊥OA.
    在Rt△OCD中,∵OD=6,OC=1,∴.
    又∵,∴∠DOC=60°.
    ∴(米2).
    故选C.

    8、C
    【解析】
    试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.
    考点:中心对称图形的概念.
    9、C
    【解析】
    分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.
    【详解】
    =3,故选项A不合题意;
    ﹣32=﹣9,故选项B不合题意;
    (﹣3)﹣2=,故选项C符合题意;
    ﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.
    故选C.
    【点睛】
    本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.
    10、D
    【解析】
    解:连接OD
    ∵∠AOD=60°,
    ∴ACD=30°.
    ∵∠CEB是△ACE的外角,
    ∴△CEB=∠ACD+∠CAO=30°+45°=75°
    故选:D


    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2<x≤1
    【解析】
    本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.
    【详解】
    由①得x>2,
    由②得x≤1,
    ∴不等式组的解集为2<x≤1.
    故答案为:2<x≤1.
    【点睛】
    此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    12、8
    【解析】
    根据反比例函数的性质结合点的坐标利用勾股定理解答.
    【详解】
    解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x<0)中,得k=8.
    给答案为:8.
    【点睛】
    此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.
    13、5
    【解析】
    试题分析:利用根与系数的关系进行求解即可.
    解:∵x1,x2是方程x2-3x+2=0的两根,
    ∴x1+ x2=,x1x2=,
    ∴x1+x2+x1x2=3+2=5.
    故答案为:5.
    14、6.2
    【解析】
    根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.
    【详解】
    解:在Rt△ABC中,
    ∵∠ACB=90°,
    ∴BC=AB•sin∠BAC=12×0.515≈6.2(米),
    答:大厅两层之间的距离BC的长约为6.2米.
    故答案为:6.2.
    【点睛】
    本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.
    15、1
    【解析】
    由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.
    【详解】
    解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
    ∴△ABD∽△ECD,
    ∴,
    即 ,
    解得:AB= =1(米).
    故答案为1.
    【点睛】
    本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.
    16、70°
    【解析】
    试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b,所以∠4=∠1=70°.
    故答案为70°.
    考点:角的计算;平行线的性质.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2);拓展:
    【解析】
    (1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
    (2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
    拓展:对△ABD的外心位置进行推理,即可得出结论.
    【详解】
    (1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
    ∴BD=CE,
    ∴BC-BD=BC-CE,即BE=CD,
    ∵∠B=∠C=40°,
    ∴AB=AC,
    在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS);
    (2)解:∵∠B=∠C=40°,AB=BE,
    ∴∠BEA=∠EAB=(180°-40°)=70°,
    ∵BE=CD,AB=AC,
    ∴AC=CD,
    ∴∠ADC=∠DAC=(180°-40°)=70°,
    ∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
    拓展:
    解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
    ∴∠BAD=140°-∠BDA<90°.
    ∴∠BDA>50°,
    又∵∠BDA<90°,
    ∴50°<∠BDA<90°.
    【点睛】
    本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
    18、(1)见解析;(2)70°;(3)1.
    【解析】
    (1)先根据等边对等角得出∠B=∠D,即可得出结论;
    (2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
    (3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
    【详解】
    (1)∵AB=AD,
    ∴∠B=∠D,
    ∵∠B=∠C,
    ∴∠C=∠D;
    (2)∵四边形ABEF是圆内接四边形,
    ∴∠DFE=∠B,
    由(1)知,∠B=∠D,
    ∴∠D=∠DFE,
    ∵∠BEF=140°=∠D+∠DFE=2∠D,
    ∴∠D=70°,
    由(1)知,∠C=∠D,
    ∴∠C=70°;
    (3)如图,由(2)知,∠D=∠DFE,
    ∴EF=DE,
    连接AE,OC,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴BE=DE,
    ∴BE=EF=2,
    在Rt△ABE中,tanB==3,
    ∴AE=3BE=6,根据勾股定理得,AB=,
    ∴OA=OC=AB=,
    ∵点C是 的中点,
    ∴ ,
    ∴∠AOC=90°,
    ∴AC=OA=2,
    ∵,
    ∴∠CAG=∠CEA,
    ∵∠ACG=∠ECA,
    ∴△ACG∽△ECA,
    ∴,
    ∴CE•CG=AC2=1.

    【点睛】
    本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
    19、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析
    【解析】
    解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
    ,解得:。
    答:每台电脑0.5万元,每台电子白板1.5万元。
    (2)设需购进电脑a台,则购进电子白板(30-a)台,
    则,解得:,即a=15,16,17。
    故共有三种方案:
    方案一:购进电脑15台,电子白板15台.总费用为万元;
    方案二:购进电脑16台,电子白板14台.总费用为万元;
    方案三:购进电脑17台,电子白板13台.总费用为万元。
    ∴方案三费用最低。
    (1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。
    (2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。
    20、43米
    【解析】
    作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=,列出方程即可解决问题.
    【详解】
    解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.

    在Rt△ABD中,∵∠ADB=45°,
    ∴AB=BD=x,
    在Rt△AEC中,
    tan∠ACE==tan37.5°≈0.77,
    ∴=0.77,
    解得x≈43,
    答:“小雁塔”的高AB的长度约为43米.
    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
    21、见解析
    【解析】
    三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.
    【详解】

    作∠CDP=∠BCD,PD与AC的交点即P.
    【点睛】
    本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.
    22、(1)600(2)见解析
    (3)3200(4)
    【解析】
    (1)60÷10%=600(人).
    答:本次参加抽样调查的居民有600人.(2分)
    (2)如图;…(5分)

    (3)8000×40%=3200(人).
    答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)
    (4)如图;

    (列表方法略,参照给分).…(8分)
    P(C粽)==.
    答:他第二个吃到的恰好是C粽的概率是.…(10分)
    23、(1)见解析;(2)S四边形ADOE =.
    【解析】
    (1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
    (2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴OA=OB=OC=OD.
    ∵平行四边形ADOE,
    ∴OD∥AE,AE=OD.
    ∴AE=OB.
    ∴四边形AOBE为平行四边形.
    ∵OA=OB,
    ∴四边形AOBE为菱形.
    (2)解:∵菱形AOBE,
    ∴∠EAB=∠BAO.
    ∵矩形ABCD,
    ∴AB∥CD.
    ∴∠BAC=∠ACD,∠ADC=90°.
    ∴∠EAB=∠BAO=∠DCA.
    ∵∠EAO+∠DCO=180°,
    ∴∠DCA=60°.
    ∵DC=2,
    ∴AD=.
    ∴SΔADC=.
    ∴S四边形ADOE =.
    【点睛】
    考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
    24、(3)证明见解析(3)3或﹣3
    【解析】
    (3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.
    【详解】
    证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.
    ∵k为整数,
    ∴(3k﹣3)3>2,即△>2.
    ∴方程有两个不相等的实数根.
    (3)解:∵方程kx3﹣(4k+3)x+3k+3=2为一元二次方程,
    ∴k≠2.
    ∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,
    ∴x3=3,.
    ∵方程的两个实数根都是整数,且k为整数,
    ∴k=3或﹣3.
    【点睛】
    本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.

    相关试卷

    《2023年江苏省徐州市区部分中考数学五模试卷含解析及点睛》:

    这是一份《2023年江苏省徐州市区部分中考数学五模试卷含解析及点睛》,共20页。

    江苏省徐州市区部分2022年中考联考数学试题含解析:

    这是一份江苏省徐州市区部分2022年中考联考数学试题含解析,共22页。试卷主要包含了若a与﹣3互为倒数,则a=等内容,欢迎下载使用。

    江苏省徐州市区联校2022年中考数学全真模拟试卷含解析:

    这是一份江苏省徐州市区联校2022年中考数学全真模拟试卷含解析,共19页。试卷主要包含了学校小组名同学的身高,估计5﹣的值应在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map