江苏省徐州市部分2021-2022学年中考四模数学试题含解析
展开
这是一份江苏省徐州市部分2021-2022学年中考四模数学试题含解析,共22页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.点A(-2,5)关于原点对称的点的坐标是 ( )
A.(2,5) B.(2,-5) C.(-2,-5) D.(-5,-2)
2.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141° B.144° C.147° D.150°
3.下列命题中,错误的是( )
A.三角形的两边之和大于第三边
B.三角形的外角和等于360°
C.等边三角形既是轴对称图形,又是中心对称图形
D.三角形的一条中线能将三角形分成面积相等的两部分
4.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是( )
A.60° B.35° C.30.5° D.30°
5.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
A.12 B.16 C.20 D.24
6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有( )个.
A.3 B.4 C.2 D.1
7.一次函数与反比例函数在同一个坐标系中的图象可能是( )
A. B. C. D.
8.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
9.下图是某几何体的三视图,则这个几何体是( )
A.棱柱 B.圆柱 C.棱锥 D.圆锥
10.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=( )
A.1 B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.
12.已知,且,则的值为__________.
13.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.
14.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.
15.如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去……,试用图形揭示的规律计算:__________.
16.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )
A. B. C. D.
17.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)
19.(5分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
特例探索
(1)如图1,当∠ABE=45°,c=时,a= ,b= ;
如图2,当∠ABE=10°,c=4时,a= ,b= ;
归纳证明
(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;
拓展应用
(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=1.求AF的长.
20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
21.(10分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.
小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:
x/cm
0
1
2
3
4
5
6
y1/cm
0
0.78
1.76
2.85
3.98
4.95
4.47
y2/cm
4
4.69
5.26
5.96
5.94
4.47
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:
①连接BE,则BE的长约为 cm.
②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为 cm.
22.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
23.(12分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为 度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;
(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
(3)PA、PB、PC满足的等量关系为 .
24.(14分)如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.
求证:四边形是平行四边形.若,,则在点的运动过程中:
①当______时,四边形是矩形;
②当______时,四边形是菱形.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).
故选:B.
【点睛】
考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
2、B
【解析】
先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
【详解】
(6﹣2)×180°÷6=120°,
(5﹣2)×180°÷5=108°,
∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
=720°﹣360°﹣216°
=144°,
故选B.
【点睛】
本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
3、C
【解析】
根据三角形的性质即可作出判断.
【详解】
解:A、正确,符合三角形三边关系;
B、正确;三角形外角和定理;
C、错误,等边三角形既是轴对称图形,不是中心对称图形;
D、三角形的一条中线能将三角形分成面积相等的两部分,正确.
故选:C.
【点睛】
本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.
4、D
【解析】
根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
【详解】
连接OB,
∵点B是弧的中点,
∴∠AOB= ∠AOC=60°,
由圆周角定理得,∠D= ∠AOB=30°,
故选D.
【点睛】
此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
5、D
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
【详解】
、分别是、的中点,
是的中位线,
,
菱形的周长.
故选:.
【点睛】
本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
6、A
【解析】
利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.
【详解】
∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),
∴A(-3,0),
∴AB=1-(-3)=4,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以②正确;
∵抛物线开口向下,
∴a>0,
∵抛物线的对称轴为直线x=-=-1,
∴b=2a>0,
∴ab>0,所以③错误;
∵x=-1时,y<0,
∴a-b+c<0,
而a>0,
∴a(a-b+c)<0,所以④正确.
故选A.
【点睛】
本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.
7、B
【解析】
当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴D不符合题意.
故选B.
8、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
9、D
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.
故选D.
【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.
10、D
【解析】
解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.
点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=,即CD=2CH=2.
【详解】
解:如图,作OH⊥CD于H,连结OC,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,
∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,
∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故答案为2.
【点睛】
本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可
12、1
【解析】
分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.
详解:∵,
∴设a=6x,b=5x,c=4x,
∵a+b-2c=6,
∴6x+5x-8x=6,
解得:x=2,
故a=1.
故答案为1.
点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.
13、10或1
【解析】
分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.
【详解】
如图,作半径于C,连接OB,
由垂径定理得:=AB=×60=30cm,
在中,,
当水位上升到圆心以下时 水面宽80cm时,
则,
水面上升的高度为:;
当水位上升到圆心以上时,水面上升的高度为:,
综上可得,水面上升的高度为30cm或1cm,
故答案为:10或1.
【点睛】
本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.
14、60°
【解析】
先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.
【详解】
∵DA⊥CE,
∴∠DAE=90°,
∵∠1=30°,
∴∠BAD=60°,
又∵AB∥CD,
∴∠D=∠BAD=60°,
故答案为60°.
【点睛】
本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.
15、
【解析】
结合图形发现计算方法: ,即计算其面积和的时候,只需让总面积减去剩下的面积.
【详解】
解:原式==
故答案为:
【点睛】
此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.
16、C
【解析】
分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可
【详解】
由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则
当0<x≤2,s=x
当2<x≤3,s=1
所以刚开始的时候为正比例函数s=x图像,后面为水平直线,故选C
【点睛】
本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态
17、或10
【解析】
试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.
三、解答题(共7小题,满分69分)
18、
【解析】
设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.
【详解】
解:设灯柱的长为米,过点作于点过点做于点
∴四边形为矩形,
∵∴
又∵∴
在中,
∴
∴又∴
在中,
解得,(米)
∴灯柱的高为米.
19、(1)2,2;2,2;(2)+=5;(1)AF=2.
【解析】
试题分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;
(2)猜想:a2+b2=5c2,如图1,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;
(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.
考点:相似形综合题.
20、(1)4元或6元;(2)九折.
【解析】
解:(1)设每千克核桃应降价x元.
根据题意,得(60﹣x﹣40)(100+×20)=2240,
化简,得 x2﹣10x+24=0,解得x1=4,x2=6.
答:每千克核桃应降价4元或6元.
(2)由(1)可知每千克核桃可降价4元或6元.
∵要尽可能让利于顾客,∴每千克核桃应降价6元.
此时,售价为:60﹣6=54(元),.
答:该店应按原售价的九折出售.
21、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.
【解析】
(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;
(3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;
②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.
【详解】
(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:
∵CD⊥AB,
∴(cm),
∴AD=AB+BD=4+0.9367=4.9367(cm),
∴(cm);
补充完整如下表:
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:
(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,
∴BE=BC=6cm,
故答案为:6;
②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:
当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;
综上所述:BC的长度约为6cm或4.1cm;
故答案为:6或4.1.
【点睛】
本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.
22、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
23、(1)150,(1)证明见解析(3)
【解析】
(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;
(1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;
(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.
试题解析:
【详解】
解:(1)∵△ABP≌△ACP′,
∴AP=AP′,
由旋转变换的性质可知,∠PAP′=60°,P′C=PB,
∴△PAP′为等边三角形,
∴∠APP′=60°,
∵∠PAC+∠PCA=×60° =30°,
∴∠APC=150°,
∴∠P′PC=90°,
∴PP′1+PC1=P′C1,
∴PA1+PC1=PB1,
故答案为150,PA1+PC1=PB1;
(1)如图,作°,使,连接,.过点A作AD⊥于D点.
∵°,
即,
∴.
∵AB=AC,,
∴.
∴,°.
∵AD⊥,
∴°.
∴在Rt中,.
∴.
∵°,
∴°.
∴°.
∴在Rt中,.
∴;
(3)如图1,与(1)的方法类似,
作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,
作AD⊥PP′于D,
由旋转变换的性质可知,∠PAP′=α,P′C=PB,
∴∠APP′=90°-,
∵∠PAC+∠PCA=,
∴∠APC=180°-,
∴∠P′PC=(180°-)-(90°-)=90°,
∴PP′1+PC1=P′C1,
∵∠APP′=90°-,
∴PD=PA•cos(90°-)=PA•sin,
∴PP′=1PA•sin,
∴4PA1sin1+PC1=PB1,
故答案为4PA1sin1+PC1=PB1.
【点睛】
本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.
24、 (1)、证明过程见解析;(2)、①、2;②、1.
【解析】
(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.
【详解】
(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,
∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,
∴△EBF≌△DCF(AAS), ∴DC=BE, ∴四边形BECD是平行四边形;
(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;
∴∠ECB=30°,∴BE=BC=2,
②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,
∴△CBE是等边三角形,∴BE=BC=1.
【点睛】
本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.
相关试卷
这是一份《2023年江苏省徐州市区部分中考数学五模试卷含解析及点睛》,共20页。
这是一份江苏省徐州市区部分2022年中考联考数学试题含解析,共22页。试卷主要包含了若a与﹣3互为倒数,则a=等内容,欢迎下载使用。
这是一份江苏省徐州市区联校2021-2022学年中考四模数学试题含解析,共19页。试卷主要包含了关于二次函数,下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。