所属成套资源:高考数学(理数)一轮复习 单元测试 (含详解)
高考数学(理数)一轮复习03《导数及其应用》单元测试 (含详解)
展开
这是一份高考数学(理数)一轮复习03《导数及其应用》单元测试 (含详解),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.()已知曲线y=x2的一条切线的斜率为,则切点的横坐标为 ( )
A.4 B.3 C.2 D.
解:y′=x=⇒x=2.故选C.
2.函数f(x)=(4-x)ex的单调递减区间是( )
A.(-∞,4) B.(-∞,3)
C.(4,+∞) D.(3,+∞)
解:f′(x)=-ex+(4-x)ex=ex(3-x),令f′(x)0,所以3-x3.故选D.
3.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为 ( )
A.- B.0 C. D.5
解:因为f(x)是R上的可导偶函数,所以f(x)的图象关于y轴对称,所以f(x)在x=0处取得极值,即f′(0)=0,又f(x)的周期为5,所以f′(5)=0,即曲线y=f(x)在x=5处的切线的斜率为0.故选B.
4.已知函数f(x)=-x3+ax2-x-1在R上是单调函数,则实数a的取值范围是 ( )
A.(-∞,-]∪[,+∞) B.[-,]
C.(-∞,-)∪(,+∞) D.(-,)
解:因为f′(x)=-3x2+2ax-1≤0在R上恒成立,所以Δ=4a2-12≤0,解得-≤a≤ .故选B.
5.已知函数f′(x),g′(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一直角坐标系下的图象如图所示,设函数h(x)=f(x)-g(x),则( )
A.h(1)
相关试卷
这是一份高考数学(理数)一轮复习06《数列》单元测试 (含详解),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习04《三角函数》单元测试 (含详解)
这是一份高考数学(理数)一轮复习11《统计》单元测试 (含详解),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。