第21章一元二次方程-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)
展开第21章一元二次方程-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)
一.选择题(共12小题)
1.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是( )
A.有一个实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.没有实数根
2.(2022•黔东南州)已知关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,若x1=﹣1,则a﹣x12﹣x22的值为( )
A.7 B.﹣7 C.6 D.﹣6
3.(2021•遵义)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是( )
A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0
4.(2021•毕节市)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( )
A.5 B.6 C.7 D.8
5.(2021•毕节市)已知关于x的一元二次方程ax2﹣4x﹣1=0有两个不相等的实数根,则a的取值范围是( )
A.a≥﹣4 B.a>﹣4 C.a≥﹣4且a≠0 D.a>﹣4且a≠0
6.(2021•黔东南州)若关于x的一元二次方程x2﹣ax+6=0的一个根是2,则a的值为( )
A.2 B.3 C.4 D.5
7.(2020•黔西南州)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是( )
A.m<2 B.m≤2 C.m<2且m≠1 D.m≤2且m≠1
8.(2020•黔东南州)已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是( )
A.﹣7 B.7 C.3 D.﹣3
9.(2020•黔东南州)若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为( )
A.16 B.24 C.16或24 D.48
10.(2020•铜仁市)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于( )
A.7 B.7或6 C.6或﹣7 D.6
11.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为( )
A.5 B.10 C.11 D.13
12.(2020•遵义)如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为( )
A.(30﹣2x)(40﹣x)=600 B.(30﹣x)(40﹣x)=600
C.(30﹣x)(40﹣2x)=600 D.(30﹣2x)(40﹣2x)=600
二.填空题(共5小题)
13.(2022•铜仁市)若一元二次方程x2+2x+k=0有两个相等的实数根,则k的值为 .
14.(2021•黔西南州)三角形两边的长分别为2和5,第三边的长是方程x2﹣8x+15=0的根,则该三角形的周长为 .
15.(2020•黔南州)对于实数a,b,定义运算“a*b=”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2= .
16.(2020•毕节市)关于x的一元二次方程(k+2)x2+6x+k2+k﹣2=0有一个根是0,则k的值是 .
17.(2020•黔西南州)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了 个人.
三.解答题(共3小题)
18.(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.
用“<”或“>”填空:a b,ab 0;
(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.
19.(2022•毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)
类别
价格
A款钥匙扣
B款钥匙扣
进货价(元/件)
30
25
销售价(元/件)
45
37
(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;
(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?
20.(2020•黔南州)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.
用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:
(1)填写上图中第四个图中y的值为 ,第五个图中y的值为 .
(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为 ,当x=48时,对应的y= .
(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?
第21章一元二次方程-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)
参考答案与试题解析
一.选择题(共12小题)
1.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是( )
A.有一个实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.没有实数根
【解答】解:根据题中的新定义化简得:(x+k)(x﹣k)﹣1=2x,
整理得:x2﹣2x﹣1﹣k2=0,
∵Δ=4﹣4(﹣1﹣k2)=4k2+8>0,
∴方程有两个不相等的实数根.
故选:B.
2.(2022•黔东南州)已知关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,若x1=﹣1,则a﹣x12﹣x22的值为( )
A.7 B.﹣7 C.6 D.﹣6
【解答】解:∵关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,
∴x1+x2=2,x1•x2=﹣a,
∵x1=﹣1,
∴x2=3,x1•x2=﹣3=﹣a,
∴a=3,
∴原式=3﹣(﹣1)2﹣32
=3﹣1﹣9
=﹣7.
故选:B.
3.(2021•遵义)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是( )
A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0
【解答】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣2,αβ=q=﹣20,
则以α、β为根的一元二次方程是x2+2x﹣20=0.
故选:B.
4.(2021•毕节市)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( )
A.5 B.6 C.7 D.8
【解答】解:设八年级有x个班,
依题意得:x(x﹣1)=15,
整理得:x2﹣x﹣30=0,
解得:x1=6,x2=﹣5(不合题意,舍去).
故选:B.
5.(2021•毕节市)已知关于x的一元二次方程ax2﹣4x﹣1=0有两个不相等的实数根,则a的取值范围是( )
A.a≥﹣4 B.a>﹣4 C.a≥﹣4且a≠0 D.a>﹣4且a≠0
【解答】解:根据题意得a≠0且Δ=(﹣4)2﹣4a×(﹣1)>0,
解得a>﹣4且a≠0,
故选:D.
6.(2021•黔东南州)若关于x的一元二次方程x2﹣ax+6=0的一个根是2,则a的值为( )
A.2 B.3 C.4 D.5
【解答】解:∵关于x的一元二次方程x2﹣ax+6=0的一个根是2,
∴22﹣2a+6=0,
解得a=5.
故选:D.
7.(2020•黔西南州)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是( )
A.m<2 B.m≤2 C.m<2且m≠1 D.m≤2且m≠1
【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,
∴,
解得:m≤2且m≠1.
故选:D.
8.(2020•黔东南州)已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是( )
A.﹣7 B.7 C.3 D.﹣3
【解答】解:设另一个根为x,则
x+2=﹣5,
解得x=﹣7.
故选:A.
9.(2020•黔东南州)若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为( )
A.16 B.24 C.16或24 D.48
【解答】解:如图所示:
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∵x2﹣10x+24=0,
因式分解得:(x﹣4)(x﹣6)=0,
解得:x=4或x=6,
分两种情况:
①当AB=AD=4时,4+4=8,不能构成三角形;
②当AB=AD=6时,6+6>8,
∴菱形ABCD的周长=4AB=24.
故选:B.
10.(2020•铜仁市)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于( )
A.7 B.7或6 C.6或﹣7 D.6
【解答】解:∵m、n、4分别是等腰三角形(非等边三角形)三边的长,
∴当m=4或n=4时,即x=4,
∴方程为42﹣6×4+k+2=0,
解得:k=6,此时有x2﹣6x+8=0,
解得x=4或x=2,∵2+4=6>4,能构成等腰三角形,
∴k=6符合题意;
当m=n时,
即Δ=(﹣6)2﹣4×(k+2)=0,
解得:k=7,此时有x2﹣6x+9=0,
解得x1=x2=3,
∵3+3=6>4,能构成等腰三角形,
∴k=7符合题意.
综上所述,k的值等于6或7,故选:B.
11.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为( )
A.5 B.10 C.11 D.13
【解答】解:根据题意得x1+x2=3,x1x2=﹣2,
所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.
故选:D.
12.(2020•遵义)如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为( )
A.(30﹣2x)(40﹣x)=600 B.(30﹣x)(40﹣x)=600
C.(30﹣x)(40﹣2x)=600 D.(30﹣2x)(40﹣2x)=600
【解答】解:设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,
根据题意得:(30﹣2x)(40﹣2x)=600.
故选:D.
二.填空题(共5小题)
13.(2022•铜仁市)若一元二次方程x2+2x+k=0有两个相等的实数根,则k的值为 1 .
【解答】解:根据题意得Δ=22﹣4×1×k=0,即4﹣4k=0
解得k=1.
故答案为:1.
14.(2021•黔西南州)三角形两边的长分别为2和5,第三边的长是方程x2﹣8x+15=0的根,则该三角形的周长为 12 .
【解答】解:解方程x2﹣8x+15=0得:x=3或5,
当第三边为3时,2+3=5,不符合三角形三边关系定理,不能组成三角形,舍去;
当第三边为5时,符合三角形三边关系定理,能组成三角形,此时三角形的周长是2+5+5=12,
故答案为:12.
15.(2020•黔南州)对于实数a,b,定义运算“a*b=”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2= 0 .
【解答】解:x2﹣8x+16=0,解得:x=4,
即x1=x2=4,
则x1*x2=x1•x2﹣x22=16﹣16=0,
故答案为0.
16.(2020•毕节市)关于x的一元二次方程(k+2)x2+6x+k2+k﹣2=0有一个根是0,则k的值是 1 .
【解答】解:把x=0代入方程得:k2+k﹣2=0,
(k﹣1)(k+2)=0,
可得k﹣1=0或k+2=0,
解得:k=1或k=﹣2,
当k=﹣2时,k+2=0,此时方程不是一元二次方程,舍去;
则k的值为1.
故答案为:1.
17.(2020•黔西南州)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了 10 个人.
【解答】解:设每轮传染中平均每人传染了x人.
依题意,得1+x+x(1+x)=121,
即(1+x)2=121,
解方程,得x1=10,x2=﹣12(舍去).
答:每轮传染中平均每人传染了10人.
三.解答题(共3小题)
18.(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.
用“<”或“>”填空:a < b,ab < 0;
(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.
【解答】解:(1)由数轴上点的坐标知:a<0<b,
∴a<b,ab<0.
故答案为:<,<.
(2)①利用公式法:x2+2x﹣1=0,
Δ=22﹣4×1×(﹣1)
=4+4
=8,
∴x=
=
=
=﹣1±.
∴x1=﹣1+,x2=﹣1﹣;
②利用因式分解法:x2﹣3x=0,
∴x(x﹣3)=0.
∴x1=0,x2=3;
③利用配方法:x2﹣4x=4,
两边都加上4,得x2﹣4x+4=8,
∴(x﹣2)2=8.
∴x﹣2=±2.
∴x1=2+2,x2=2﹣2;
④利用因式分解法:x2﹣4=0,
∴(x+2)(x﹣2)=0.
∴x1=﹣2,x2=2.
19.(2022•毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)
类别
价格
A款钥匙扣
B款钥匙扣
进货价(元/件)
30
25
销售价(元/件)
45
37
(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;
(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?
【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,
依题意得:,
解得:.
答:购进A款钥匙扣20件,B款钥匙扣10件.
(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,
依题意得:30m+25(80﹣m)≤2200,
解得:m≤40.
设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.
∵3>0,
∴w随m的增大而增大,
∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.
答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.
(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,
依题意得:(a﹣25)(78﹣2a)=90,
整理得:a2﹣64a+1020=0,
解得:a1=30,a2=34.
答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.
20.(2020•黔南州)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.
用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:
(1)填写上图中第四个图中y的值为 10 ,第五个图中y的值为 15 .
(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为 y= ,当x=48时,对应的y= 1128 .
(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?
【解答】解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.
故答案为:10;15.
(2)∵1=,3=,6=,10=,15=,
∴y=,
当x=48时,y==1128.
故答案为:y=;1128.
(3)依题意,得:=190,
化简,得:x2﹣x﹣380=0,
解得:x1=20,x2=﹣19(不合题意,舍去).
答:该班共有20名女生.
第29章+投影与视图-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州): 这是一份第29章+投影与视图-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州): 这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州): 这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共29页。