![第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)第1页](http://img-preview.51jiaoxi.com/2/3/13529100/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)第2页](http://img-preview.51jiaoxi.com/2/3/13529100/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)第3页](http://img-preview.51jiaoxi.com/2/3/13529100/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
展开这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
第27章 相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
一.选择题(共5小题)
1.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1: B.1:2 C.1:3 D.1:4
2.(2020•毕节市)已知=,则的值为( )
A. B. C. D.
3.(2020•铜仁市)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是( )
A.①②③ B.①③ C.①② D.②③
4.(2020•铜仁市)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为( )
A.3 B.2 C.4 D.5
5.(2020•遵义)如图,△ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为( )
A.9 B.12 C.15 D.18
二.填空题(共4小题)
6.(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是 .
7.(2021•黔西南州)如图,△A′B′C′与△ABC是位似图形,点O为位似中心,若OA′=A′A,则△A′B′C′与△ABC的面积比为 .
8.(2021•黔东南州)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为 .
9.(2020•黔东南州)如图,矩形ABCD中,AB=2,E为CD的中点,连接AE、BD交于点P,过点P作PQ⊥BC于点Q,则PQ= .
三.解答题(共2小题)
10.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形;
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
11.(2020•黔西南州)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.
(1)求证:CD是⊙O的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
第27章 相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
参考答案与试题解析
一.选择题(共5小题)
1.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1: B.1:2 C.1:3 D.1:4
【解答】解:∵∠B=∠ACD,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴==,
故选:B.
2.(2020•毕节市)已知=,则的值为( )
A. B. C. D.
【解答】解:∵=,
∴设a=2x,b=5x,
∴==.
故选:C.
3.(2020•铜仁市)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是( )
A.①②③ B.①③ C.①② D.②③
【解答】解:如图,在正方形ABCD中,AD∥BC,AB=BC=AD=4,∠B=∠BAD=90°,
∴∠HAD=90°,
∵HF∥AD,
∴∠H=90°,
∵∠HAF=90°﹣∠DAM=45°,
∴∠AFH=∠HAF.
∵AF=,
∴AH=HF=1=BE.
∴EH=AE+AH=AB﹣BE+AH=4=BC,
∴△EHF≌△CBE(SAS),
∴EF=EC,∠HEF=∠BCE,
∵∠BCE+∠BEC=90°,
∴HEF+∠BEC=90°,
∴∠FEC=90°,
∴△CEF是等腰直角三角形,
在Rt△CBE中,BE=1,BC=4,
∴EC2=BE2+BC2=17,
∴S△ECF=EF•EC=EC2=,故①正确;
过点F作FQ⊥BC于Q,交AD于P,
∴∠APF=90°=∠H=∠HAD,
∴四边形APFH是矩形,
∵AH=HF,
∴矩形AHFP是正方形,
∴AP=PF=AH=1,
同理:四边形ABQP是矩形,
∴PQ=AB=4,BQ=AP=1,FQ=FP+PQ=5,CQ=BC﹣BQ=3,
∵AD∥BC,
∴△FPG∽△FQC,
∴,
∴,
∴PG=,
∴AG=AP+PG=,
在Rt△EAG中,根据勾股定理得,EG==,
∴△AEG的周长为AG+EG+AE=++3=8,故②正确;
∵AD=4,
∴DG=AD﹣AG=,
∴DG2+BE2=+1=,
∵EG2=()2=≠,
∴EG2≠DG2+BE2,故③错误,
∴正确的有①②,
故选:C.
4.(2020•铜仁市)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为( )
A.3 B.2 C.4 D.5
【解答】解:∵△FHB和△EAD的周长分别为30和15,
∴△FHB和△EAD的周长比为2:1,
∵△FHB∽△EAD,
∴=2,即=2,
解得,EA=3,
故选:A.
5.(2020•遵义)如图,△ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为( )
A.9 B.12 C.15 D.18
【解答】解:
∵NQ∥MP∥OB,
∴△ANQ∽△AMP∽△AOB,
∵M、N是OA的三等分点,
∴=,=,
∴=,
∵四边形MNQP的面积为3,
∴=,
∴S△ANQ=1,
∵=()2=,
∴S△AOB=9,
∴k=2S△AOB=18,
故选:D.
二.填空题(共4小题)
6.(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是 2 .
【解答】解:∵△OAB与△OCD位似,位似中心是坐标原点O,
而点A(4,0),点C(2,0),
∴相似比为4:2=2:1,
∴△OAB与△OCD周长的比值为2.
故答案为:2.
7.(2021•黔西南州)如图,△A′B′C′与△ABC是位似图形,点O为位似中心,若OA′=A′A,则△A′B′C′与△ABC的面积比为 1:4 .
【解答】解:∵OA′=A′A,
∴=,
∵△A′B′C′与△ABC是位似图形,
∴△A′B′C′∽△ABC,
∴△A′B′C′与△ABC的面积比=()2=,
故答案为:1:4.
8.(2021•黔东南州)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为 (4,2)或(﹣4,﹣2) .
【解答】解:如图,观察图象可知,点A的对应点的坐标为(4,2)或(﹣4,﹣2).
故答案为:(4,2)或(﹣4,﹣2).
9.(2020•黔东南州)如图,矩形ABCD中,AB=2,E为CD的中点,连接AE、BD交于点P,过点P作PQ⊥BC于点Q,则PQ= .
【解答】解:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,
∵E为CD的中点,
∴DE=CD=AB,
∴△ABP∽△EDP,
∴=,
∴=,
∴=,
∵PQ⊥BC,
∴PQ∥CD,
∴△BPQ∽△BDC,
∴==,
∵CD=2,
∴PQ=,
故答案为:.
三.解答题(共2小题)
10.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形;
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
【解答】(1)证明:∵∠四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∵BE=CF,
∴BE+EC=EC+CF,即BC=EF,
∴AD=EF,
∴四边形AEFD是平行四边形;
(2)解:连接DE,如图,
∵四边形ABCD是矩形,
∴∠B=90°,
在Rt△ABE中,AE==2,
∵AD∥BC,
∴∠AEB=∠EAD,
∵∠B=∠AED=90°,
∴△ABE∽△DEA,
∴AE:AD=BE:AE,
∴AD==10,
∵AB=4,
∴四边形AEFD的面积=AB×AD=4×10=40.
11.(2020•黔西南州)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.
(1)求证:CD是⊙O的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
【解答】解:(1)如图1中,连接OD、DB,
∵点E是线段OB的中点,DE⊥AB交⊙O于点D,
∴DE垂直平分OB,
∴DB=DO,OE=BE.
解法一:
∵在⊙O中,DO=OB,
∴DB=DO=OB,
∴△ODB是等边三角形,
∴∠BDO=∠DBO=60°,
∵BC=OB=BD,且∠DBE为△BDC的外角,
∴∠BCD=∠BDC=∠DBO.
∵∠DBO=60°,
∴∠CDB=30°.
∴∠ODC=∠BDO+∠BDC=60°+30°=90°,
∴CD是⊙O的切线;
解法二:
∵BC=OB,OB=OD,
∴===,
又∵∠DOE=∠COD,
∴△EOD∽△DOC,
∴∠CDO=∠DEO=90°,
∴CD为圆O的切线;
(2)答:这个确定的值是.
连接OP,如图2中:
由已知可得:OP=OB=BC=2OE.
∴==,
又∵∠COP=∠POE,
∴△OEP∽△OPC,
∴==.
相关试卷
这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共21页。
这是一份第29章+投影与视图-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共29页。