广东省深圳市坪山区中学山中学2021-2022学年中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.函数的图象上有两点,,若,则( )
A. B. C. D.、的大小不确定
2.下列图案中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
3.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
4.下列计算正确的是( )
A. B. C. D.
5.一元二次方程(x+2017)2=1的解为( )
A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
6.已知x2-2x-3=0,则2x2-4x的值为( )
A.-6 B.6 C.-2或6 D.-2或30
7.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
8.下列各数:1.414,,﹣,0,其中是无理数的为( )
A.1.414 B. C.﹣ D.0
9.有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种 B.2种 C.3种 D.4种
10.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
A.12 B.14 C.15 D.25
11.下列调查中,调查方式选择合理的是( )
A.为了解襄阳市初中每天锻炼所用时间,选择全面调查
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查
C.为了解神舟飞船设备零件的质量情况,选择抽样调查
D.为了解一批节能灯的使用寿命,选择抽样调查
12.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:3﹣(﹣2)=____.
14.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.
15.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐标是_____.
16.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
17.如图所示,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=,若将菱形向右平移,菱形的两个顶点B、C恰好同时落在反比例函数的图象上,则反比例函数的解析式是______________.
18.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如: <0等。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
若a>0,b>0,则>0;若a<0,b<0,则>0;
若a>0,b<0,则<0;若a<0,b>0,则<0.
反之:若>0,则 或 ,
(1)若<0,则___或___.
(2)根据上述规律,求不等式 >0的解集.
20.(6分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
21.(6分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.
小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:
x/cm
0
1
2
3
4
5
6
y1/cm
0
0.78
1.76
2.85
3.98
4.95
4.47
y2/cm
4
4.69
5.26
5.96
5.94
4.47
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:
①连接BE,则BE的长约为 cm.
②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为 cm.
22.(8分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
23.(8分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.
队别
平均分
中位数
方差
合格率
优秀率
七年级
6.7
m
3.41
90%
n
八年级
7.1
7.5
1.69
80%
10%
(1)请依据图表中的数据,求a、b的值;
(2)直接写出表中的m、n的值;
(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
24.(10分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
品种
A
B
原来的运费
45
25
现在的运费
30
20
(1)求每次运输的农产品中A,B产品各有多少件;
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
25.(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
26.(12分)如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
27.(12分)(1)计算:.
(2)解方程:x2﹣4x+2=0
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.
【详解】
解:∵y=-1x1-8x+m,
∴此函数的对称轴为:x=-=-=-1,
∵x1<x1<-1,两点都在对称轴左侧,a<0,
∴对称轴左侧y随x的增大而增大,
∴y1<y1.
故选A.
【点睛】
此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.
2、B
【解析】
根据轴对称图形与中心对称图形的概念解答.
【详解】
A.不是轴对称图形,是中心对称图形;
B.是轴对称图形,是中心对称图形;
C.不是轴对称图形,也不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
4、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
5、A
【解析】
利用直接开平方法解方程.
【详解】
(x+2017)2=1
x+2017=±1,
所以x1=-2018,x2=-1.
故选A.
【点睛】
本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
6、B
【解析】
方程两边同时乘以2,再化出2x2-4x求值.
解:x2-2x-3=0
2×(x2-2x-3)=0
2×(x2-2x)-6=0
2x2-4x=6
故选B.
7、D
【解析】
根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
【详解】
解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
故选:D.
【点睛】
本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
8、B
【解析】
试题分析:根据无理数的定义可得是无理数.故答案选B.
考点:无理数的定义.
9、B
【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
10、C
【解析】
先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
【详解】
∴三角形的两边长分别为5和7,
∴2<第三条边<12,
∴5+7+2<三角形的周长<5+7+12,
即14<三角形的周长<24,
故选C.
【点睛】
本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.
11、D
【解析】
A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;
C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
故选D.
12、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2+2
【解析】
根据平面向量的加法法则计算即可.
【详解】
3﹣(﹣2)
=3﹣+2
=2+2,
故答案为:2+2,
【点睛】
本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.
14、1
【解析】
过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.
【详解】
解:过A作x轴垂线,过B作x轴垂线,
点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
∴A(1,1),B(2,),
∵AC∥BD∥y轴,
∴C(1,k),D(2,),
∵△OAC与△ABD的面积之和为,
,
S△ABD=S梯形AMND﹣S梯形AAMNB,
,
∴k=1,
故答案为1.
【点睛】
本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.
15、(﹣7,0)
【解析】
直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案.
【详解】
∵将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,
∴平移后的解析式为:y=-4(x+7)2,
故得到的抛物线的顶点坐标是:(-7,0).
故答案为(-7,0).
【点睛】
此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键.
16、1
【解析】
由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
【详解】
解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
∴△=2,
∴b2﹣4ac=22﹣4×1×m=2;
∴m=1.
故答案为1.
【点睛】
本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
17、
【解析】
解:连接AC,交y轴于D.∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2).∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.故答案为y=.
点睛:本题考查了菱形的性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.
18、1
【解析】
先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
【详解】
解:∵BD=CD,
∴,
∴OD⊥BC,
∴BE=CE,
而OA=OB,
∴OE为△ABC的中位线,
∴,
∴DE=OD-OE=5-3=1.
故答案为1.
【点睛】
此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1) 或;(2)x>2或x<−1.
【解析】
(1)根据两数相除,异号得负解答;
(2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.
【详解】
(1)若>0,则 或 ;
故答案为: 或;
(2)由上述规律可知,不等式转化为或,
所以,x>2或x<−1.
【点睛】
此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.
20、(1)10%;(1)会跌破10000元/m1.
【解析】
(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
【详解】
(1)设11、11两月平均每月降价的百分率是x,
则11月份的成交价是:14000(1-x),
11月份的成交价是:14000(1-x)1,
∴14000(1-x)1=11340,
∴(1-x)1=0.81,
∴x1=0.1=10%,x1=1.9(不合题意,舍去)
答:11、11两月平均每月降价的百分率是10%;
(1)会跌破10000元/m1.
如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
11340(1-x)1=11340×0.81=9184.5<10000,
由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
【点睛】
此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
21、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.
【解析】
(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;
(3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;
②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.
【详解】
(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:
∵CD⊥AB,
∴(cm),
∴AD=AB+BD=4+0.9367=4.9367(cm),
∴(cm);
补充完整如下表:
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:
(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,
∴BE=BC=6cm,
故答案为:6;
②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:
当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;
综上所述:BC的长度约为6cm或4.1cm;
故答案为:6或4.1.
【点睛】
本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.
22、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
【解析】
(1)参加丙组的人数为21人;
(2)21÷10%=10人,则乙组人数=10-21-11=10人,
如图:
(3)设需从甲组抽调x名同学到丙组,
根据题意得:3(11-x)=21+x
解得x=1.
答:应从甲抽调1名学生到丙组
(1)直接根据条形统计图获得数据;
(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
23、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.
【解析】
试题分析:(1)根据题中数据求出a与b的值即可;
(2)根据(1)a与b的值,确定出m与n的值即可;
(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.
试题解析:(1)根据题意得:
解得a=5,b=1;
(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;
优秀率为=20%,即n=20%;
(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,
故八年级队比七年级队成绩好.
考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.
24、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.
【解析】
(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,
(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.
【详解】
解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,
根据题意得:
,
解得:,
答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,
(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,
增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,
根据题意得:W=30(10+m)+20(38-m)=10m+1060,
由题意得:38-m≤2(10+m),
解得:m≥6,
即6≤m≤8,
∵一次函数W随m的增大而增大
∴当m=6时,W最小=1120,
答:产品件数增加后,每次运费最少需要1120元.
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.
25、(1).(2)①判断:.理由见解析;②或.
【解析】
(1)利用代点法可以求出参数 ;
(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
②根据①中的情况,可知或再结合图像可以确定的取值范围;
【详解】
解:(1)∵函数的图象经过点,
∴将点代入,即 ,得:
∵直线与轴交于点,
∴将点代入,即 ,得:
(2)①判断: .理由如下:
当时,点P的坐标为,如图所示:
∴点C的坐标为 ,点D的坐标为
∴ , .
∴.
②由①可知当时
所以由图像可知,当直线往下平移的时也符合题意,即 ,
得;
当时,点P的坐标为
∴点C的坐标为 ,点D的坐标为
∴ ,
∴
当 时,即,也符合题意,
所以 的取值范围为:或 .
【点睛】
本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
26、(1);(2)P(1,); (3)3或5.
【解析】
(1)将点A、B代入抛物线,用待定系数法求出解析式.
(2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
(3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
【详解】
解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
∴,解得,
∴抛物线解析式为,
(2),
∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴,
∴,
∴,
,
∴P(1,),
(3)设新抛物线的表达式为
则,,DE=2
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF
∴,
∴FH=1.
点D在y轴的正半轴上,则,
∴,
∴,
∴m=3,
点D在y轴的负半轴上,则,
∴,
∴,
∴m=5,
∴综上所述m的值为3或5.
【点睛】
本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
27、(1)-1;(2)x1=2+,x2=2﹣
【解析】
(1)按照实数的运算法则依次计算即可;
(2)利用配方法解方程.
【详解】
(1)原式=﹣2﹣1+2×=﹣1;
(2)x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
∴x﹣2=±,
∴x1=2+,x2=2﹣.
【点睛】
此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
2023-2024学年广东省深圳市坪山实验中学、坪山中学九年级(上)联考数学试卷(10月份)(含解析): 这是一份2023-2024学年广东省深圳市坪山实验中学、坪山中学九年级(上)联考数学试卷(10月份)(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年广东省深圳市坪山区中考数学二模试卷(含解析): 这是一份2023年广东省深圳市坪山区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市坪山区中考数学二模试卷(含解析): 这是一份2023年广东省深圳市坪山区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。