|试卷下载
搜索
    上传资料 赚现金
    广东省吴川一中学2021-2022学年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    广东省吴川一中学2021-2022学年中考数学仿真试卷含解析01
    广东省吴川一中学2021-2022学年中考数学仿真试卷含解析02
    广东省吴川一中学2021-2022学年中考数学仿真试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省吴川一中学2021-2022学年中考数学仿真试卷含解析

    展开
    这是一份广东省吴川一中学2021-2022学年中考数学仿真试卷含解析,共24页。试卷主要包含了某种圆形合金板材的成本y等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
    A.180人 B.117人 C.215人 D.257人
    2.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是    

    A. B. C. D.
    3.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    4.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为(  )
    A.18元 B.36元 C.54元 D.72元
    5.如果向北走6km记作+6km,那么向南走8km记作(  )
    A.+8km B.﹣8km C.+14km D.﹣2km
    6.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是(  )

    A.40° B.65° C.70° D.80°
    7.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为(  )

    A. B. C. D.
    8.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为(  )

    A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
    9.不等式组 中两个不等式的解集,在数轴上表示正确的是
    A. B.
    C. D.
    10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
    班级
    参加人数
    平均数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    某同学分析上表后得出如下结论:
    ①甲、乙两班学生的平均成绩相同;
    ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
    ③甲班成绩的波动比乙班大.
    上述结论中,正确的是(  )
    A.①② B.②③ C.①③ D.①②③
    11.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是  
    A.平均数 B.中位数 C.众数 D.方差
    12.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)

    14.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.
    15.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________

    16.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.
    17.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留

    18.计算:+(|﹣3|)0=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

    20.(6分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
    (1)求证:CB平分∠ACE;
    (2)若BE=3,CE=4,求O的半径.

    21.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
    22.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
    23.(8分)某船的载重为260吨,容积为1000m1.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m1,乙种货物每吨体积为2m1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙).
    24.(10分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
    求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
    25.(10分)阅读材料,解答下列问题:
    神奇的等式
    当a≠b时,一般来说会有a2+b≠a+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:
    ()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…
    (1)特例验证:
    请再写出一个具有上述特征的等式:   ;
    (2)猜想结论:
    用n(n为正整数)表示分数的分母,上述等式可表示为:   ;
    (3)证明推广:
    ①(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;
    ②等式()2+=+()2(m,n为任意实数,且n≠0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由.
    26.(12分)先化简,再求值:(m+2﹣)•,其中m=﹣.
    27.(12分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
    (1)求证:四边形FBGH是菱形;
    (2)求证:四边形ABCH是正方形.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
    【详解】
    设男生为x人,则女生有65%x人,由题意得,
    x+65%x=297,
    解之得
    x=180,
    297-180=117人.
    故选B.
    【点睛】
    本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
    2、D
    【解析】
    根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
    【详解】
    ①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
    ②时,由图像可知此时,即,故②正确.
    ③由对称轴,可得,所以错误,故③错误;
    ④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
    故答案选D.
    【点睛】
    本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
    3、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    4、D
    【解析】
    设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
    【详解】
    解:根据题意设y=kπx2,
    ∵当x=3时,y=18,
    ∴18=kπ•9,
    则k=,
    ∴y=kπx2=•π•x2=2x2,
    当x=6时,y=2×36=72,
    故选:D.
    【点睛】
    本题考查了二次函数的应用,解答时求出函数的解析式是关键.
    5、B
    【解析】
    正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
    【详解】
    解:向北和向南互为相反意义的量.
    若向北走6km记作+6km,
    那么向南走8km记作﹣8km.
    故选:B.
    【点睛】
    本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
    6、C
    【解析】
    根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
    【详解】
    解:∵AD∥BC,
    ∴∠B+∠BAD=180°,
    ∵∠B=40°,
    ∴∠BAD=140°,
    ∵AC平分∠DAB,
    ∴∠DAC=∠BAD=70°,
    ∵A∥BC,
    ∴∠C=∠DAC=70°,
    故选C.
    【点睛】
    本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
    7、A
    【解析】
    过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
    【详解】
    过O作OC⊥AB于C,过N作ND⊥OA于D,

    ∵N在直线y=x+3上,
    ∴设N的坐标是(x,x+3),
    则DN=x+3,OD=-x,
    y=x+3,
    当x=0时,y=3,
    当y=0时,x=-4,
    ∴A(-4,0),B(0,3),
    即OA=4,OB=3,
    在△AOB中,由勾股定理得:AB=5,
    ∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
    ∴3×4=5OC,
    OC=,
    ∵在Rt△NOM中,OM=ON,∠MON=90°,
    ∴∠MNO=45°,
    ∴sin45°=,
    ∴ON=,
    在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
    即(x+3)2+(-x)2=()2,
    解得:x1=-,x2=,
    ∵N在第二象限,
    ∴x只能是-,
    x+3=,
    即ND=,OD=,
    tan∠AON=.
    故选A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
    8、D
    【解析】
    解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.

    点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
    9、B
    【解析】
    由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B.
    10、D
    【解析】
    分析:根据平均数、中位数、方差的定义即可判断;
    详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
    根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
    根据方差可知,甲班成绩的波动比乙班大.
    故①②③正确,
    故选D.
    点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    11、D
    【解析】
    解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
    B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
    C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
    D.原来数据的方差==,
    添加数字2后的方差==,
    故方差发生了变化.
    故选D.
    12、A
    【解析】
    根据左视图的概念得出各选项几何体的左视图即可判断.
    【详解】
    解:A选项几何体的左视图为

    B选项几何体的左视图为

    C选项几何体的左视图为

    D选项几何体的左视图为

    故选:A.
    【点睛】
    本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、18π
    【解析】
    根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.
    【详解】
    解:∵正六边形的内角为=120°,
    ∴扇形的圆心角为360°−120°=240°,
    ∴“三叶草”图案中阴影部分的面积为=18π,
    故答案为18π.
    【点睛】
    此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.
    14、2
    【解析】
    侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.
    【详解】
    设母线长为x,根据题意得
    2πx÷2=2π×5,
    解得x=1.
    故答案为2.
    【点睛】
    本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.
    15、
    【解析】
    作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
    【详解】
    作PD⊥BC,则PD∥AC,
    ∴△PBD~△ABC,
    ∴ .
    ∵AC=3,BC=4,
    ∴AB=,
    ∵AP=2BP,
    ∴BP=,
    ∴,
    ∴点P运动的路径长=.
    故答案为:.

    【点睛】
    本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
    16、1
    【解析】
    根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.
    【详解】
    解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
    则1张普通贺卡为:元,
    由题意得:,

    答:剩下的钱恰好还能买1张普通贺卡.
    故答案为:1.
    【点睛】
    本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.
    17、
    【解析】
    直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.
    【详解】
    由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.
    故答案为6π.
    【点睛】
    本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.
    18、
    【解析】
    原式= .

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)10米;(2)11.4米
    【解析】
    (1)延长DC交AN于H.只要证明BC=CD即可;
    (2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题.
    【详解】
    (1)如图,延长DC交AN于H,

    ∵∠DBH=60°,∠DHB=90°,
    ∴∠BDH=30°,
    ∵∠CBH=30°,
    ∴∠CBD=∠BDC=30°,
    ∴BC=CD=10(米);
    (2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
    ∴DH=15,
    在Rt△ADH中,AH=≈=20,
    ∴AB=AH﹣BH=20﹣8.65=11.4(米).
    【点睛】
    本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    20、(1)证明见解析;(2).
    【解析】
    试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
    (2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
    (1)证明:如图1,连接OB,

    ∵AB是⊙0的切线,
    ∴OB⊥AB,
    ∵CE丄AB,
    ∴OB∥CE,
    ∴∠1=∠3,
    ∵OB=OC,
    ∴∠1=∠2,
    ∴∠2=∠3,
    ∴CB平分∠ACE;
    (2)如图2,连接BD,

    ∵CE丄AB,
    ∴∠E=90°,
    ∴BC===5,
    ∵CD是⊙O的直径,
    ∴∠DBC=90°,
    ∴∠E=∠DBC,
    ∴△DBC∽△CBE,
    ∴,
    ∴BC2=CD•CE,
    ∴CD==,
    ∴OC==,
    ∴⊙O的半径=.
    考点:切线的性质.
    21、(1);(2).
    【解析】
    (1)直接根据概率公式求解;
    (2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
    【详解】
    (1)正数为2,所以该球上标记的数字为正数的概率为;
    (2)画树状图为:

    共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    22、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
    【解析】
    (1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
    (2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;
    (3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.
    【详解】
    (1)y=300﹣10(x﹣44),
    即y=﹣10x+740(44≤x≤52);
    (2)根据题意得(x﹣40)(﹣10x+740)=2400,
    解得x1=50,x2=64(舍去),
    答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;
    (3)w=(x﹣40)(﹣10x+740)
    =﹣10x2+1140x﹣29600
    =﹣10(x﹣57)2+2890,
    当x<57时,w随x的增大而增大,
    而44≤x≤52,
    所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,
    答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
    【点睛】
    本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.
    23、这艘船装甲货物80吨,装乙货物180吨.
    【解析】
    根据题意先列二元一次方程,再解方程即可.
    【详解】
    解:设这艘船装甲货物x吨,装乙货物y吨,
    根据题意,得.
    解得.
    答:这艘船装甲货物80吨,装乙货物180吨.
    【点睛】
    此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键.
    24、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
    【解析】
    (1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
    (2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
    (3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
    【详解】
    (1)将点E代入直线解析式中,
    0=﹣×4+m,
    解得m=3,
    ∴解析式为y=﹣x+3,
    ∴C(0,3),
    ∵B(3,0),
    则有,
    解得,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4),
    设直线BD的解析式为y=kx+b,代入点B、D,

    解得,
    ∴直线BD的解析式为y=﹣2x+6,
    则点M的坐标为(x,﹣2x+6),
    ∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
    ∴当x=时,S有最大值,最大值为.
    (3)存在,
    如图所示,

    设点P的坐标为(t,0),
    则点G(t,﹣t+3),H(t,﹣t2+2t+3),
    ∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
    CG==t,
    ∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
    而HG∥y轴,
    ∴HG∥CF,HG=HF,CG=CF,
    ∠GHC=∠CHF,
    ∴∠FCH=∠CHG,
    ∴∠FCH=∠FHC,
    ∴∠GCH=∠GHC,
    ∴CG=HG,
    ∴|t2﹣t|=t,
    当t2﹣t=t时,
    解得t1=0(舍),t2=4,
    此时点P(4,0).
    当t2﹣t=﹣t时,
    解得t1=0(舍),t2=,
    此时点P(,0).
    综上,点P的坐标为(4,0)或(,0).
    【点睛】
    此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
    25、(1)()1+=+()1;;(1)()1+=+()1;;(3)①成立,理由见解析;②成立,理由见解析.
    【解析】
    (1)根据题目中的等式列出相同特征的等式即可;
    (1)根据题意找出等式特征并用n表达即可;
    (3)①先后证明左右两边的等式的结果,如果结果相同则成立;
    ②先证明等式是否成立,如果成立再根据等式的特征写出m,n至少有一个为无理数的等式.
    【详解】
    解:(1)具有上述特征的等式可以是()1+=+()1,
    故答案为()1+=+()1;
    (1)上述等式可表示为()1+=+()1,
    故答案为()1+=+()1;
    (3)①等式成立,
    证明:∵左边=()1+=+=,
    右边=+()1=,
    ∴左边=右边,
    ∴等式成立;
    ②此等式也成立,例如:()1+=+()1.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征.
    26、-2(m+3),-1.
    【解析】
    此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.
    【详解】
    解:(m+2-)•,
    =,
    =-,
    =-2(m+3).
    把m=-代入,得,
    原式=-2×(-+3)=-1.
    27、(1)见解析 (2)见解析
    【解析】
    (1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;
    (2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.
    【详解】
    (1)∵点F、G是边AC的三等分点,
    ∴AF=FG=GC.
    又∵点D是边AB的中点,
    ∴DH∥BG.
    同理:EH∥BF.
    ∴四边形FBGH是平行四边形,
    连结BH,交AC于点O,
    ∴OF=OG,
    ∴AO=CO,
    ∵AB=BC,
    ∴BH⊥FG,
    ∴四边形FBGH是菱形;
    (2)∵四边形FBGH是平行四边形,
    ∴BO=HO,FO=GO.
    又∵AF=FG=GC,
    ∴AF+FO=GC+GO,即:AO=CO.
    ∴四边形ABCH是平行四边形.
    ∵AC⊥BH,AB=BC,
    ∴四边形ABCH是正方形.

    【点睛】
    本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.

    相关试卷

    广东省吴川一中学实验校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份广东省吴川一中学实验校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了下列各数中,为无理数的是等内容,欢迎下载使用。

    广东省深圳市坪山区中学山中学2021-2022学年中考数学仿真试卷含解析: 这是一份广东省深圳市坪山区中学山中学2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了下列计算正确的是,一元二次方程2=1的解为,有下列四个命题,下列各数,有下列四种说法等内容,欢迎下载使用。

    2022年广东省吴川一中学中考猜题数学试卷含解析: 这是一份2022年广东省吴川一中学中考猜题数学试卷含解析,共20页。试卷主要包含了如图,已知抛物线c等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map