|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广东省深圳市龙文教育重点中学中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2022届广东省深圳市龙文教育重点中学中考数学仿真试卷含解析01
    2022届广东省深圳市龙文教育重点中学中考数学仿真试卷含解析02
    2022届广东省深圳市龙文教育重点中学中考数学仿真试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省深圳市龙文教育重点中学中考数学仿真试卷含解析

    展开
    这是一份2022届广东省深圳市龙文教育重点中学中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中是无理数的是,初三,计算36÷,下列各式中,互为相反数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是(  )

    A. B. C. D.
    2.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

    A. B. C.- D.
    3.3的相反数是( )
    A.﹣3 B.3 C. D.﹣
    4.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是(  )

    A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>0
    5.如图,直线AB∥CD,则下列结论正确的是(  )

    A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
    6.下列实数中是无理数的是(  )
    A. B.π C. D.
    7.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    8.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是(  )

    A.(6,3) B.(6,4) C.(7,4) D.(8,4)
    9.计算36÷(﹣6)的结果等于(  )
    A.﹣6 B.﹣9 C.﹣30 D.6
    10.下列各式中,互为相反数的是( )
    A.和 B.和 C.和 D.和
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点O,则阴影部分的面积为_____.

    12.已知a,b为两个连续的整数,且a<<b,则ba=_____.
    13.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)
    14.已知:正方形 ABCD.
    求作:正方形 ABCD 的外接圆.
    作法:如图,
    (1)分别连接 AC,BD,交于点 O;
    (2)以点 O 为圆心,OA 长为半径作⊙O,⊙O 即为所求作的圆.
    请回答:该作图的依据是__________________________________.

    15.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.

    16.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.

    17.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.

    19.(5分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
    (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
    (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
    九宫格

    20.(8分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).
    (1)求该抛物线的函数表达式.
    (2)求直线AB关于x轴对称的直线的函数表达式.
    (3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM < PN时,求点P的横坐标的取值范围.

    21.(10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
    请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.
    22.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?

    23.(12分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.
    (1)求四边形OEBF的面积;
    (2)求证:OG•BD=EF2;
    (3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.

    24.(14分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.

    (Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
    (Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
    (Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
    【详解】
    ∵△ABC为等边三角形,
    ∴∠B=∠C=60°,BC=AB=a,PC=a-x.
    ∵∠APD=60°,∠B=60°,
    ∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
    ∴∠BAP=∠CPD,
    ∴△ABP∽△PCD,
    ∴,即,
    ∴y=- x2+x.
    故选C.
    【点睛】
    考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
    2、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    3、A
    【解析】
    试题分析:根据相反数的概念知:1的相反数是﹣1.
    故选A.
    【考点】相反数.
    4、C
    【解析】
    根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.
    【详解】
    解:由数轴上点的位置,得
    a<﹣4<b<0<c<1<d.
    A、a<﹣4,故A不符合题意;
    B、bd<0,故B不符合题意;
    C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;
    D、b+c<0,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键
    5、D
    【解析】
    分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
    详解:如图,∵AB∥CD,
    ∴∠3+∠5=180°,
    又∵∠5=∠4,
    ∴∠3+∠4=180°,
    故选D.

    点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
    6、B
    【解析】
    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
    【详解】
    A、是分数,属于有理数;
    B、π是无理数;
    C、=3,是整数,属于有理数;
    D、-是分数,属于有理数;
    故选B.
    【点睛】
    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
    7、C
    【解析】
    根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
    【详解】
    ∵在△ABC中,AD和BE是高,
    ∴∠ADB=∠AEB=∠CEB=90°,
    ∵点F是AB的中点,
    ∴FD=AB,FE=AB,
    ∴FD=FE,①正确;
    ∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
    ∴∠ABC=∠C,
    ∴AB=AC,
    ∵AD⊥BC,
    ∴BC=2CD,∠BAD=∠CAD=∠CBE,
    在△AEH和△BEC中, ,
    ∴△AEH≌△BEC(ASA),
    ∴AH=BC=2CD,②正确;
    ∵∠BAD=∠CBE,∠ADB=∠CEB,
    ∴△ABD∽△BCE,
    ∴,即BC•AD=AB•BE,
    ∵∠AEB=90°,AE=BE,
    ∴AB=BE
    BC•AD=BE•BE,
    ∴BC•AD=AE2;③正确;
    设AE=a,则AB=a,
    ∴CE=a﹣a,
    ∴=,
    即 ,
    ∵AF=AB,
    ∴ ,
    ∴S△BEC≠S△ADF,故④错误,
    故选:C.
    【点睛】
    本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    8、C
    【解析】
    根据题意知小李所对应的坐标是(7,4).
    故选C.
    9、A
    【解析】
    分析:根据有理数的除法法则计算可得.
    详解:31÷(﹣1)=﹣(31÷1)=﹣1.
    故选A.
    点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.
    10、A
    【解析】
    根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    解:A. =9,=-9,故和互为相反数,故正确;
    B. =9,=9,故和不是互为相反数,故错误;
    C. =-8,=-8,故和不是互为相反数,故错误;
    D. =8,=8故和不是互为相反数,故错误.
    故选A.
    【点睛】
    本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.

    二、填空题(共7小题,每小题3分,满分21分)
    11、6﹣π
    【解析】
    连接、,根据阴影部分的面积计算.
    【详解】
    连接、,

    ,,
    ,,
    为的直径,





    阴影部分的面积
    .
    故答案为.
    【点睛】
    本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关键.
    12、1
    【解析】
    根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.
    【详解】
    解:∵a,b为两个连续的整数,且a<<b,
    ∴a=2,b=3,
    ∴ba=32=1.
    故答案为1.
    【点睛】
    此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,
    13、<
    【解析】
    先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.
    【详解】
    由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,
    ∵1<x1<1,3<x1<4,
    ∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,
    ∴y1<y1.
    故答案为<.
    14、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
    【解析】
    利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O 上,从而得到⊙O 为正方形的外接圆.
    【详解】
    ∵四边形 ABCD 为正方形,
    ∴OA=OB=OC=OD,
    ∴⊙O 为正方形的外接圆.
    故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    15、
    【解析】
    根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.
    【详解】
    正△A1B1C1的面积是,
    而△A2B2C2与△A1B1C1相似,并且相似比是1:2,
    则面积的比是,则正△A2B2C2的面积是×;
    因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;
    依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.
    所以第8个正△A8B8C8的面积是×()7=.
    故答案为.
    【点睛】
    本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.
    16、64°
    【解析】
    解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.
    点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.
    17、1
    【解析】
    利用△ACD∽△CBD,对应线段成比例就可以求出.
    【详解】
    ∵CD⊥AB,∠ACB=90°,
    ∴△ACD∽△CBD,
    ∴,
    ∴,
    ∴CD=1.
    【点睛】
    本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)15.
    【解析】
    (1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
    (2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
    【详解】
    (1)证明:连结OD,∵∠ACB=90°,
    ∴∠A+∠B=90°,
    又∵OD=OB,
    ∴∠B=∠BDO,
    ∵∠ADE=∠A,
    ∴∠ADE+∠BDO=90°,
    ∴∠ODE=90°.
    ∴DE是⊙O的切线;
    (2)连结CD,∵∠ADE=∠A,

    ∴AE=DE.
    ∵BC是⊙O的直径,∠ACB=90°.
    ∴EC是⊙O的切线.
    ∴DE=EC.
    ∴AE=EC,
    又∵DE=10,
    ∴AC=2DE=20,
    在Rt△ADC中,DC=
    设BD=x,在Rt△BDC中,BC2=x2+122,
    在Rt△ABC中,BC2=(x+16)2﹣202,
    ∴x2+122=(x+16)2﹣202,解得x=9,
    ∴BC=.
    【点睛】
    考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
    19、(1);(2)
    【解析】
    试题分析:(1)利用概率公式直接计算即可;
    (2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
    试题解析:
    (1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
    (2)画树形图得:

    由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
    考点:列表法与树状图法;概率公式.
    20、(1)(2)(3)
    【解析】
    (1)根据待定系数法,可得二次函数的解析式;
    (2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;
    (3)根据PM<PN,可得不等式,利用绝对值的性质化简解不等式,可得答案.
    【详解】
    (1)将A(﹣1,1),B(2,5)代入函数解析式,得:
    ,解得:,抛物线的解析式为y=x2﹣2x﹣3;
    (2)设AB的解析式为y=kx+b,将A(﹣1,1),B(2,5)代入函数解析式,得:
    ,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=﹣(x+1),化简,得:y=﹣x﹣1;
    (3)设M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.
    ∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.
    ∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.
    故当PM<PN时,求点P的横坐标xP的取值范围是2<xP<2.
    【点睛】
    本题考查了二次函数综合题.解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式.
    21、见解析
    【解析】
    (1)如图:

    (2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.
    22、10,1.
    【解析】
    试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
    试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
    当时,(舍去),
    当时,,
    答:所围矩形猪舍的长为10m、宽为1m.
    考点:一元二次方程的应用题.
    23、(1);(2)详见解析;(3)AE=.
    【解析】
    (1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得S四边形OEBF=S△BOC=S正方形ABCD;
    (2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;
    (3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
    ∴∠BOF+∠COF=90°,
    ∵∠EOF=90°,
    ∴∠BOF+∠COE=90°,
    ∴∠BOE=∠COF,
    在△BOE和△COF中,

    ∴△BOE≌△COF(ASA),
    ∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD
    (2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
    ∴△OEG∽△OBE,
    ∴OE:OB=OG:OE,
    ∴OG•OB=OE2,

    ∴OG•BD=EF2;
    (3)如图,过点O作OH⊥BC,
    ∵BC=1,

    设AE=x,则BE=CF=1﹣x,BF=x,
    ∴S△BEF+S△COF=BE•BF+CF•OH

    ∴当时,S△BEF+S△COF最大;
    即在旋转过程中,当△BEF与△COF的面积之和最大时,

    【点睛】
    本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.
    24、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
    【解析】
    (1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
    (1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
    (3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
    【详解】
    (Ⅰ)设OD为x,
    ∵点A(3,0),点B(0,),
    ∴AO=3,BO=
    ∴AB=6
    ∵折叠
    ∴BD=DA
    在Rt△ADO中,OA1+OD1=DA1.
    ∴9+OD1=(﹣OD)1.
    ∴OD=
    ∴D(0,)
    (Ⅱ)∵折叠
    ∴∠BDC=∠CDO=90°
    ∴CD∥OA
    ∴且BD=AC,

    ∴BD=﹣18
    ∴OD=﹣(﹣18)=18﹣
    ∵tan∠ABO=,
    ∴∠ABC=30°,即∠BAO=60°
    ∵tan∠ABO=,
    ∴CD=11﹣6
    ∴D(11﹣6,11﹣18)
    (Ⅲ)如图:过点C作CE⊥AO于E

    ∵CE⊥AO
    ∴OE=1,且AO=3
    ∴AE=1,
    ∵CE⊥AO,∠CAE=60°
    ∴∠ACE=30°且CE⊥AO
    ∴AC=1,CE=
    ∵BC=AB﹣AC
    ∴BC=6﹣1=4
    若点B'落在A点右边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=1+
    ∴B'(1+,0)
    若点B'落在A点左边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=﹣1
    ∴B'(1﹣,0)
    综上所述:B'(1+,0),(1﹣,0)
    【点睛】
    本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.

    相关试卷

    广东省深圳市坪山区中学山中学2021-2022学年中考数学仿真试卷含解析: 这是一份广东省深圳市坪山区中学山中学2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了下列计算正确的是,一元二次方程2=1的解为,有下列四个命题,下列各数,有下列四种说法等内容,欢迎下载使用。

    广东省深圳市坪山区2022年中考数学仿真试卷含解析: 这是一份广东省深圳市坪山区2022年中考数学仿真试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,不等式组的解集为等内容,欢迎下载使用。

    广东省深圳市罗芳中学2022年中考数学仿真试卷含解析: 这是一份广东省深圳市罗芳中学2022年中考数学仿真试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,下列命题是假命题的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map