甘肃省武威市凉州区洪祥镇2022年中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.化简的结果是( )
A.1 B. C. D.
2.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是( )
①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.
A.1个 B.2个 C.3个 D.4个
3.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )
A.26×105 B.2.6×102 C.2.6×106 D.260×104
4.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )
A. B. C. D.
5.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2,则扇形圆心角的度数为( )
A.120° B.140° C.150° D.160°
6.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
7.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A.0.2 B.0.25 C.0.4 D.0.5
8.的算术平方根是( )
A.9 B.±9 C.±3 D.3
9.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
10.下列关于事件发生可能性的表述,正确的是( )
A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
二、填空题(共7小题,每小题3分,满分21分)
11.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.
12.因式分解:a2b-4ab+4b=______.
13.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
14.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.
15.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为________.
16.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
17.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH; ④EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)
三、解答题(共7小题,满分69分)
18.(10分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:
(1)甲选择座位W的概率是多少;
(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.
19.(5分)先化简,再求值:,其中的值从不等式组的整数解中选取.
20.(8分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.
21.(10分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?
22.(10分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.
23.(12分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED灯泡
普通白炽灯泡
进价(元)
45
25
标价(元)
60
30
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
24.(14分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
原式=•(x–1)2+=+==1,故选A.
2、D
【解析】
等腰直角三角形纸片ABC中,∠C=90°,
∴∠A=∠B=45°,
由折叠可得,∠EDF=∠A=45°,
∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,
∴∠CDE=∠DFB,故①正确;
由折叠可得,DE=AE=3,
∴CD=,
∴BD=BC﹣DC=4﹣>1,
∴BD>CE,故②正确;
∵BC=4,CD=4,
∴BC=CD,故③正确;
∵AC=BC=4,∠C=90°,
∴AB=4,
∵△DCE的周长=1+3+2=4+2,
由折叠可得,DF=AF,
∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,
∴△DCE与△BDF的周长相等,故④正确;
故选D.
点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
3、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
260万=2600000=.
故选C.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
4、B
【解析】
根据折叠前后对应角相等可知.
解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选B.
“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
5、C
【解析】
根据扇形的面积公式列方程即可得到结论.
【详解】
∵OB=10cm,AB=20cm,
∴OA=OB+AB=30cm,
设扇形圆心角的度数为α,
∵纸面面积为π cm2,
∴,
∴α=150°,
故选:C.
【点睛】
本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .
6、D
【解析】
试题解析:A、∵4+10+8+6+2=30(人),
∴参加本次植树活动共有30人,结论A正确;
B、∵10>8>6>4>2,
∴每人植树量的众数是4棵,结论B正确;
C、∵共有30个数,第15、16个数为5,
∴每人植树量的中位数是5棵,结论C正确;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植树量的平均数约是4.73棵,结论D不正确.
故选D.
考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
7、B
【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
8、D
【解析】
根据算术平方根的定义求解.
【详解】
∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算术平方根是1.
即的算术平方根是1.
故选:D.
【点睛】
考核知识点:算术平方根.理解定义是关键.
9、D
【解析】
依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
【详解】
解:∵∠ACD是△ABC的外角,
∴∠ACD=∠BAC+∠B,
∵CE平分∠DCA,
∴∠ACD=2∠ACE,
∴2∠ACE=∠BAC+∠B,故A选项正确;
∵EF∥BC,CF平分∠BCA,
∴∠BCF=∠CFE,∠BCF=∠ACF,
∴∠ACF=∠EFC,
∴OF=OC,
同理可得OE=OC,
∴EF=2OC,故B选项正确;
∵CF平分∠BCA,CE平分∠ACD,
∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
∵O不一定是AC的中点,
∴四边形AECF不一定是平行四边形,
∴四边形AFCE不一定是矩形,故D选项错误,
故选D.
【点睛】
本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
10、C
【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
【详解】
解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
故选:C.
【点睛】
考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据正弦和余弦的概念求解.
【详解】
解:∵P是∠α的边OA上一点,且P点坐标为(3,4),
∴PB=4,OB=3,OP= =5,
故sinα= = , cosα= ,
∴sinα+cosα=,
故答案为
【点睛】
此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.
12、
【解析】
先提公因式b,然后再运用完全平方公式进行分解即可.
【详解】
a2b﹣4ab+4b
=b(a2﹣4a+4)
=b(a﹣2)2,
故答案为b(a﹣2)2.
【点睛】
本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.
13、
【解析】
由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
【详解】
∵2x-y=,
∴-6x+3y=-.
∴原式=--1=-.
故答案为-.
【点睛】
本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
14、x>﹣1.
【解析】
一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.
【详解】
当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.
故答案为:x>﹣1.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
15、5
【解析】
已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.
【详解】
∵△ABC是直角三角形,CD是斜边的中线,
∴CD= AB,
又∵EF是△ABC的中位线,
∴AB=2CD=2×5=10,
∴EF=×10=5.
故答案为5.
【点睛】
本题主要考查三角形中位线定理, 直角三角形斜边上的中线,熟悉掌握是关键.
16、1.
【解析】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
∴斜边上的中线长=×10=1.
考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
17、②③④
【解析】
①可用特殊值法证明,当为的中点时,,可见.
②可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.
③先证明,得到,再根据,得到,代换可得.
④根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.
【详解】
解:
①错误.当为的中点时,,可见;
②正确.
如图,连接,交于点,
,
,,,
四边形为矩形,
,
,
,
,
,
,
.
③正确.
,
,
,
,
,
又,
,
,
,
,
.
④正确.
且四边形为矩形,
,
当时,取最小值,
此时,
故的最小值为.
故答案为:②③④.
【点睛】
本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.
三、解答题(共7小题,满分69分)
18、(1);(2)
【解析】
(1)根据概率公式计算可得;
(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.
【详解】
解:(1)由于共有A、B、W三个座位,
∴甲选择座位W的概率为,
故答案为:;
(2)画树状图如下:
由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,
所以P(甲乙相邻)==.
【点睛】
此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
19、-2.
【解析】
试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.
试题解析:原式=
==
解得-1≤x<,
∴不等式组的整数解为-1,0,1,2
若分式有意义,只能取x=2,
∴原式=-=-2
【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.
20、证明见解析.
【解析】
(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
【详解】
(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥EC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,
∵,
∴△BDE≌△BCE;
(2)四边形ABED为菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋转而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴BA=BE=ED= AD
∴四边形ABED为菱形.
考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
21、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.
【解析】
(1)根据条形统计图,求个部分数量的和即可;
(2)根据部分除以总体求得百分比;
(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.
【详解】
(1)4+8+10+18+10=50(名)
答:该校对50名学生进行了抽样调查.
(2)最喜欢足球活动的有10人,
,
∴最喜欢足球活动的人占被调查人数的20%.
(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)
=400÷20%
=2000(人)
则全校学生中最喜欢篮球活动的人数约为2000×=720(人).
【点睛】
此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.
22、;2.
【解析】
先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.
【详解】
解:原式=
=
=
的非负整数解有:2,1,0,
其中当x取2或1时分母等于0,不符合条件,故x只能取0
∴将x=0代入得:原式=2
【点睛】
本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.
23、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
【解析】
1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.
【详解】
(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个.根据题意,得
解得
答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.
(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元.则购进普通白炽灯泡(120﹣a)个.根据题意得
W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.
∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,
∵k=10>0,∴W随a的增大而增大,
∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.
【点睛】
本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.
24、解:(1) yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
【详解】
解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
yB=10×30+3(10x﹣20)=30x+240;
(2)当yA=yB时,27x+270=30x+240,得x=10;
当yA>yB时,27x+270>30x+240,得x<10;
当yA<yB时,27x+270<30x+240,得x>10
∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
(3)由题意知x=15,15>10,
∴选择A超市,yA=27×15+270=675(元),
先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
(10×15﹣20)×3×0.9=351(元),
共需要费用10×30+351=651(元).
∵651元<675元,
∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【点睛】
本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.
2022年甘肃省武威市凉州区洪祥镇九年制学校中考数学一模试卷: 这是一份2022年甘肃省武威市凉州区洪祥镇九年制学校中考数学一模试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省+武威市凉州区洪祥镇九年制学校+九年级第一次模拟测试数学试卷+: 这是一份2024年甘肃省+武威市凉州区洪祥镇九年制学校+九年级第一次模拟测试数学试卷+,共2页。
甘肃省武威市凉州区凉州区洪祥镇九年制学校2023-2024学年七年级上学期期末数学试题(含解析): 这是一份甘肃省武威市凉州区凉州区洪祥镇九年制学校2023-2024学年七年级上学期期末数学试题(含解析),共11页。试卷主要包含了选择题,填空题,计算与解方程,解答题等内容,欢迎下载使用。

