2021-2022学年甘肃省白银市中考数学对点突破模拟试卷含解析
展开
这是一份2021-2022学年甘肃省白银市中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
A.a﹣d=b﹣cB.a+c+2=b+dC.a+b+14=c+dD.a+d=b+c
2.下列实数0,,,π,其中,无理数共有( )
A.1个B.2个C.3个D.4个
3.下列运算正确的是( )
A.x2•x3=x6B.x2+x2=2x4
C.(﹣2x)2=4x2D.( a+b)2=a2+b2
4.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1B.2C.3D.4
5.如图,若AB∥CD,则α、β、γ之间的关系为( )
A.α+β+γ=360°B.α﹣β+γ=180°
C.α+β﹣γ=180°D.α+β+γ=180°
6.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为( )
A.19°B.29°C.38°D.52°
7.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图B.俯视图C.左视图D.一样大
8.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度( )
A.1B.5C.1或5D.2或4
9.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是( )
A.B.C.D.
10.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )
A.B.
C.D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
12.在Rt△ABC中,∠C=90°,sinA=,那么csA=________.
13.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
14.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.
15.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.
16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.
三、解答题(共8题,共72分)
17.(8分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).
①求a的值;
②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.
18.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.
19.(8分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;
(1)求证:DE=CF;
(2)若∠B=60°,求EF的长.
20.(8分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
21.(8分)计算:4cs30°﹣+20180+|1﹣|
22.(10分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
23.(12分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.
24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.
(1)按如下分数段整理、描述这两组数据:
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
【详解】
解:依题意,得:b=a+1,c=a+7,d=a+1.
A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
∴a﹣d≠b﹣c,选项A符合题意;
B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
∴a+c+2=b+d,选项B不符合题意;
C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
∴a+b+14=c+d,选项C不符合题意;
D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
∴a+d=b+c,选项D不符合题意.
故选:A.
【点睛】
考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
2、B
【解析】
根据无理数的概念可判断出无理数的个数.
【详解】
解:无理数有:,.
故选B.
【点睛】
本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
3、C
【解析】
根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
【详解】
A、x2•x3=x5,故A选项错误;
B、x2+x2=2x2,故B选项错误;
C、(﹣2x)2=4x2,故C选项正确;
D、( a+b)2=a2+2ab+b2,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
4、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
5、C
【解析】
过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
【详解】
解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
故选:C.
【点睛】
本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
6、C
【解析】
由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.
【详解】
∵AO∥BC,
∴∠ACB=∠OAC,
而∠OAC=19°,
∴∠ACB=19°,
∴∠AOB=2∠ACB=38°.
故选:C.
【点睛】
本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.
7、C
【解析】
如图,该几何体主视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
故三种视图面积最小的是左视图,
故选C.
8、C
【解析】
由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
【详解】
∵点C是劣弧AB的中点,
∴OC垂直平分AB,
∴DA=DB=3,
∴OD=,
若△POC为直角三角形,只能是∠OPC=90°,
则△POD∽△CPD,
∴,
∴PD2=4×1=4,
∴PD=2,
∴PB=3﹣2=1,
根据对称性得,
当P在OC的左侧时,PB=3+2=5,
∴PB的长度为1或5.
故选C.
【点睛】
考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
9、A
【解析】
函数→一次函数的图像及性质
10、A
【解析】
分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.
详解:该几何体的左视图是:
故选A.
点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
12、
【解析】
∵Rt△ABC中,∠C=90°,∴sinA=,
∵sinA=,∴c=2a,∴b= ,
∴csA=,
故答案为.
13、1
【解析】
由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
【详解】
解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
∴△=2,
∴b2﹣4ac=22﹣4×1×m=2;
∴m=1.
故答案为1.
【点睛】
本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
14、
【解析】
利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
【详解】
当y=0时,有x-=0,
解得:x=1,
∴点B1的坐标为(1,0),
∵A1OB1为等边三角形,
∴点A1的坐标为(,).
当y=时.有x-=,
解得:x=,
∴点B2的坐标为(,),
∵A2A1B2为等边三角形,
∴点A2的坐标为(,).
同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
故答案为;.
【点睛】
本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.
15、1.
【解析】
试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案为1.
考点:等腰直角三角形;平行线的性质.
16、或1
【解析】
图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
图2,当∠MB’C=90°,∠A=90°,AB=AC,
∠C=45°,
所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
所以BM=1.
【详解】
请在此输入详解!
三、解答题(共8题,共72分)
17、 (1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①;②k的取值范围是≤k≤或k=﹣1.
【解析】
(1)化成顶点式即可求得;
(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;
②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;
【详解】
(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,
∴顶点为(﹣1,﹣1);
(2)①∵二次函数C1的图象经过点A(﹣3,1),
∴a(﹣3+1)2﹣1=1,
∴a=;
②∵A(﹣3,1),对称轴为直线x=﹣1,
∴B(1,1),
当k>0时,
二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=,
二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=,
∴≤k≤,
当k<0时,∵二次函数C2:y2=kx2+kx=k(x+)2﹣k,
∴﹣k=1,
∴k=﹣1,
综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是≤k≤或k=﹣1.
【点睛】
本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.
18、 (1)详见解析;(2)4.
【解析】
试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.
试题解析:
(1)连结OD,
∵AD平分∠BAC,
∴∠DAE=∠DAB,
∵OA=OD,
∴∠ODA=∠DAO,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AC
∴OE⊥DE
∴DE是⊙O的切线;
(2)过点O作OF⊥AC于点F,
∴AF=CF=3,
∴OF=,
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED是矩形,
∴DE=OF=4.
考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.
19、证明见解析;.
【解析】
根据两组对边分别平行的四边形是平行四边形即可证明;
只要求出CD即可解决问题.
【详解】
证明:、E分别是AB、AC的中点
,
又
四边形CDEF为平行四边形
.
,
,
又为AB中点
,
在中,
,
,
四边形CDEF是平行四边形,
.
【点睛】
本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
20、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=280,
所以估计“醉美旅游景点B“的学生人数为280人.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
21、
【解析】
先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.
【详解】
原式=
=
=
【点睛】
本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.
22、
【解析】
根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.
【详解】
解:÷(﹣x+1)
=
=
=
=,
当x=﹣2时,原式= .
【点睛】
本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.
23、(1)答案见解析 (2)155° (3)答案见解析
【解析】
(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.
【详解】
(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.
(2)因为∠AOC=50°,OD平分∠AOC,
所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,
所以∠BOD=∠DOC+∠BOC=155°.
(3)因为∠DOE=90°,∠DOC=25°,
所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.
又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,
所以∠COE=∠BOE,所以OE平分∠BOC.
【点睛】
本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.
24、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析
【解析】
(1)根据折线统计图数字进行填表即可;
(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;
(3)可分别从平均数、方差、极差三方面进行比较.
【详解】
(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,
∴70⩽x⩽74无,共0个;
75⩽x⩽79之间有75,共1个;
80⩽x⩽84之间有84,82,1,83,共4个;
85⩽x⩽89之间有89,86,86,85,86,共5个;
90⩽x⩽94之间和95⩽x⩽100无,共0个.
故答案为0;1;4;5;0;0;
(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;
∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,
∴中位数为(84+85)=84.5;
∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,
1出现3次,乙成绩的众数为1.
故答案为14;84.5;1;
(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.
或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
【点睛】
此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.
成绩x
学生
70≤x≤74
75≤x≤79
80≤x≤84
85≤x≤89
90≤x≤94
95≤x≤100
甲
______
______
______
______
______
______
乙
1
1
4
2
1
1
学生
极差
平均数
中位数
众数
方差
甲
______
83.7
______
86
13.21
乙
24
83.7
82
______
46.21
相关试卷
这是一份黄冈市2021-2022学年中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份甘肃省景泰县2021-2022学年中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了不等式的最小整数解是,下列运算正确的是,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
这是一份甘肃省省定西市2021-2022学年中考数学对点突破模拟试卷含解析,共16页。试卷主要包含了计算﹣8+3的结果是等内容,欢迎下载使用。