


辽宁省2022年中考数学卷真题分题型分层汇编-09解答题(基础题)
展开辽宁省2022年中考数学卷真题分题型分层汇编-09解答题(基础题)
一.二次函数的应用(共7小题)
1. (2022•朝阳)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
(1)求y与x之间的函数关系式.
(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
2. (2022•鞍山)某超市购进一批水果,成本为8元/kg,根据市场调研发现,这种水果在未来10天的售价m(元/kg)与时间第x天之间满足函数关系式m=x+18(1≤x≤10,x为整数),又通过分析销售情况,发现每天销售量y(kg)与时间第x天之间满足一次函数关系,下表是其中的三组对应值.
时间第x天
…
2
5
9
…
销售量y/kg
…
33
30
26
…
(1)求y与x的函数解析式;
(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?
3. (2022•丹东)丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:
销售单价x(元/件)
…
35
40
45
…
每天销售数量y(件)
…
90
80
70
…
(1)直接写出y与x的函数关系式;
(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?
(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?
4. (2022•沈阳)如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.
(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?
(2)矩形框架ABCD面积的最大值为 平方厘米.
5. (2022•辽宁)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:
每千克售价x(元)
……
20
22
24
……
日销售量y(千克)
……
66
60
54
……
(1)求y与x之间的函数关系式;
(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?
6. (2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
7. (2022•盘锦)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?
二.勾股定理(共1小题)
8. (2022•大连)如图,在△ABC中,∠ACB=90°,BC=4,点D在AC上,CD=3,连接DB,AD=DB,点P是边AC上一动点(点P不与点A,D,C重合),过点P作AC的垂线,与AB相交于点Q,连接DQ,设AP=x,△PDQ与△ABD重叠部分的面积为S.
(1)求AC的长;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.
三.平行四边形的判定(共1小题)
9. (2022•鞍山)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.
四.菱形的性质(共1小题)
10. (2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.
五.切线的判定与性质(共4小题)
11. (2022•鞍山)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,点E为⊙O上一点,EF∥AC交AB的延长线于点F,CE与AB交于点D,连接BE,若∠BCE=∠ABC.
(1)求证:EF是⊙O的切线.
(2)若BF=2,sin∠BEC=,求⊙O的半径.
12. (2022•沈阳)如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.
(1)求证:PA是⊙O的切线;
(2)连接AC,sin∠BAC=,BC=2,AD的长为 .
13. (2022•盘锦)如图,四边形ABCD是正方形,点A,点B在⊙O上,边DA的延长线交⊙O于点E,对角线DB的延长线交⊙O于点F,连接EF并延长至点G,使∠FBG=∠FAB.
(1)求证:BG与⊙O相切;
(2)若⊙O的半径为1,求AF的长.
14. (2022•辽宁)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.
(1)求证:BF与⊙O相切;
(2)若AP=OP,cosA=,AP=4,求BF的长.
六.几何变换综合题(共1小题)
15. (2022•辽宁)在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.
(1)如图①,当α=20°时,∠AEB的度数是 ;
(2)如图②,当0°<α<90°时,求证:BD+2CE=AE;
(3)当0°<α<180°,AE=2CE时,请直接写出的值.
七.相似三角形的判定与性质(共3小题)
16. (2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是 .
17. (2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.
18. (2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D和点E.
(1)求证:BC与⊙O相切;
(2)若sin∠BAC=,CE=6,求OF的长.
八.解直角三角形(共2小题)
19. (2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.
(1)请判断直线CD与⊙O的位置关系,并说明理由;
(2)若sin∠ECD=,CE=5,求⊙O的半径.
20. (2022•大连)AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,过点A作⊙O的切线,与DO的延长线相交于点E.
(1)如图1,求证∠B=∠E;
(2)如图2,连接AD,若⊙O的半径为2,OE=3,求AD的长.
参考答案与试题解析
一.二次函数的应用(共7小题)
1. (2022•朝阳)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
(1)求y与x之间的函数关系式.
(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
【解答】解:(1)设每天的销售量y(件)与每件售价x(元)函数关系式为:y=kx+b,
由题意可知:,
解得:,
∴y与x之间的函数关系式为:y=﹣5x+150;
(2)(﹣5x+150)(x﹣8)=425,
解得:x1=13,x2=25(舍去),
∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;
(3)w=y(x﹣8),
=(﹣5x+150)(x﹣8),
=﹣5x2+190x﹣1200,
=﹣5(x﹣19)2+2130,
∵8≤x≤15,且x为整数,
当x<19时,w随x的增大而增大,
∴当x=15时,w有最大值,最大值为2050.
答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是2050元.
2. (2022•鞍山)某超市购进一批水果,成本为8元/kg,根据市场调研发现,这种水果在未来10天的售价m(元/kg)与时间第x天之间满足函数关系式m=x+18(1≤x≤10,x为整数),又通过分析销售情况,发现每天销售量y(kg)与时间第x天之间满足一次函数关系,下表是其中的三组对应值.
时间第x天
…
2
5
9
…
销售量y/kg
…
33
30
26
…
(1)求y与x的函数解析式;
(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?
【解答】解:(1)设每天销售量y与时间第x天之间满足的一次函数关系式为y=kx+b,
根据题意,得:,
解得,
∴y=﹣x+35(1≤x≤10,x为整数);
(2)设销售这种水果的日利润为w元,
则w=(﹣x+35)(x+18﹣8)
=﹣x2+x+350
=﹣(x﹣)2+,
∵1≤x≤10,x为整数,
∴当x=7或x=8时,w取得最大值,最大值为378,
答:在这10天中,第7天和第8天销售这种水果的利润最大,最大销售利润为378元.
3. (2022•丹东)丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:
销售单价x(元/件)
…
35
40
45
…
每天销售数量y(件)
…
90
80
70
…
(1)直接写出y与x的函数关系式;
(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?
(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?
【解答】解:(1)设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,
把(35,90),(40,80)代入得:
,
解得,
∴y=﹣2x+160;
(2)根据题意得:(x﹣30)•(﹣2x+160)=1200,
解得x1=50,x2=60,
∵规定销售单价不低于成本且不高于54元,
∴x=50,
答:销售单价应定为50元;
(3)设每天获利w元,
w=(x﹣30)•(﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,
∵﹣2<0,对称轴是直线x=55,
而x≤54,
∴x=54时,w取最大值,最大值是﹣2×(54﹣55)2+1250=1248(元),
答:当销售单价为54元时,每天获利最大,最大利润,1248元.
4. (2022•沈阳)如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.
(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?
(2)矩形框架ABCD面积的最大值为 150 平方厘米.
【解答】解:(1)设框架的长AD为xcm,则宽AB为cm,
∴x•=144,
解得x=12或x=18,
∴AB=12cm或AB=8cm,
∴AB的长为12厘米或8厘米;
(2)由(1)知,框架的长AD为xcm,则宽AB为cm,
∴S=x•,即S=﹣x2+20x=﹣(x﹣15)2+150,
∵﹣<0,
∴要使框架的面积最大,则x=15,此时AB=10,最大为150平方厘米.
故答案为:150.
5. (2022•辽宁)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:
每千克售价x(元)
……
20
22
24
……
日销售量y(千克)
……
66
60
54
……
(1)求y与x之间的函数关系式;
(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?
【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由表中数据得:,
解得:,
∴y与x之间的函数关系式为y=﹣3x+126;
(2)设批发商每日销售这批山野菜所获得的利润为w元,
由题意得:w=(x﹣18)y=(x﹣18)(﹣3x+126)=﹣3x2+180x﹣2268=﹣3(x﹣30)2+432,
∵市场监督部门规定其售价每千克不高于28元,
∴18≤x≤28,
∵﹣3<0,
∴当x<30时,w随x的增大而增大,
∴当x=28时,w最大,最大值为420,
∴当每千克山野菜的售价定为28元时,批发商每日销售这批山野菜所获得的利润最大,最大利润为420元.
6. (2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由所给函数图象可知:,
解得:,
故y与x的函数关系式为y=﹣20x+500;
(2)设每天销售这种商品所获的利润为w,
∵y=﹣20x+500,
∴w=(x﹣13)y=(x﹣13)(﹣20x+500)
=﹣20x2+760x﹣6500
=﹣20(x﹣19)2+720,
∵﹣20<0,
∴当x<19时,w随x的增大而增大,
∵13≤x≤18,
∴当x=18时,w有最大值,最大值为700,
∴售价定为18元/件时,每天最大利润为700元.
7. (2022•盘锦)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?
【解答】解:(1)设一次函数的关系式为y=kx+b,
由题图可知,函数图象过点(25,50)和点(35,30).
把这两点的坐标代入一次函数y=kx+b,
得,
解得,
∴一次函数的关系式为y=﹣2x+100;
(2)根据题意,设当天玩具的销售单价是x元,
由题意得,
(x﹣10)×(﹣2x+100)=600,
解得:x1=40,x2=20,
∴当天玩具的销售单价是40元或20元;
(3)根据题意,则w=(x﹣10)×(﹣2x+100),
整理得:w=﹣2(x﹣30)2+800;
∵﹣2<0,
∴当x=30时,w有最大值,最大值为800;
∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.
二.勾股定理(共1小题)
8. (2022•大连)如图,在△ABC中,∠ACB=90°,BC=4,点D在AC上,CD=3,连接DB,AD=DB,点P是边AC上一动点(点P不与点A,D,C重合),过点P作AC的垂线,与AB相交于点Q,连接DQ,设AP=x,△PDQ与△ABD重叠部分的面积为S.
(1)求AC的长;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.
【解答】解:(1)在Rt△BCD中,BC=4,CD=3,
∴BD==5,
又∵AD=BD,
∴AC=AD+CD=5+3=8;
(2)当点P在点D的左侧时,即0<x<5,如图1,此时重叠部分的面积就是△PQD的面积,
∵PQ⊥AC,BC⊥AC,
∴PQ∥BC,
∴△ABC∽△AQP,
∴===2,
设AP=x,则PQ=x,PD=AD﹣AP=5﹣x,
∴S重叠部分=S△PQD=(5﹣x)×x
=﹣x2+x;
当点P在点D的右侧时,即5<x<8,如图2,
由(1)得,AP=x,PQ=x,则PD=x﹣5,
∵PQ∥BC,
∴△DPE∽△DCB,
∴==,
∴PE=(x﹣5),
∴QE=PQ﹣PE=x﹣(x﹣5)=﹣x+,
∴S重叠部分=S△DEQ
=(x﹣5)×(﹣x+)
=﹣x2+x﹣;
答:S关于x的函数解析式为:当0<x<5时,S=﹣x2+x;当5<x<8时,S=﹣x2+x﹣.
三.平行四边形的判定(共1小题)
9. (2022•鞍山)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.
【解答】证明:∵∠ABD=∠BDC,
∴AB∥CD.
∴∠BAE=∠DCF.
在△ABE与△CDF中,
.
∴△ABE≌△CDF(AAS).
∴AB=CD.
∴四边形ABCD是平行四边形.
四.菱形的性质(共1小题)
10. (2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.
【解答】证明:如图,连接AC,
∵四边形ABCD是菱形,
∴∠EAC=∠FAC,
在△ACE和△ACF中,
,
∴△ACE≌△ACF(SAS)
∴CE=CF.
五.切线的判定与性质(共4小题)
11. (2022•鞍山)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,点E为⊙O上一点,EF∥AC交AB的延长线于点F,CE与AB交于点D,连接BE,若∠BCE=∠ABC.
(1)求证:EF是⊙O的切线.
(2)若BF=2,sin∠BEC=,求⊙O的半径.
【解答】(1)证明:连接OE,
∵∠BCE=∠ABC,∠BCE=∠BOE,
∴∠ABC=∠BOE,
∴OE∥BC,
∴∠OED=∠BCD,
∵EF∥AC,
∴∠FEC=∠ACE,
∴∠OED+∠FEC=∠BCD+∠ACE,
即∠FEO=∠ACB,
∵AB是直径,
∴∠ACB=90°,
∴∠FEO=90°,
∴FE⊥EO,
∵EO是⊙O的半径,
∴EF是⊙O的切线.
(2)解:∵EF∥AC,
∴△FEO∽△ACB,
∴,
∵BF=2,sin∠BEC=,
设⊙O的半径为r,
∴FO=2+r,AB=2r,BC=r,
∴,
解得:r=3,
检验得:r=3是原分式方程的解,
∴⊙O的半径为3.
12. (2022•沈阳)如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.
(1)求证:PA是⊙O的切线;
(2)连接AC,sin∠BAC=,BC=2,AD的长为 6 .
【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠DCE=180°,
∴∠BAD=∠DCE,
∵∠BAP+∠DCE=90°,
∴∠BAP+∠BAD=90°,
∴∠OAP=90°,
∵OA是⊙O的半径,
∴PA是圆O的切线;
(2)连接BO并延长交⊙O于点F,连接CF,
∵BF是⊙O的直径,
∴∠BCF=90°,
∵∠BAC=∠F,
∴sin∠BAC=sinF=,
在Rt△BCF中,BC=2,
∴BF===6,
∴AD=BF=6,
故答案为:6.
13. (2022•盘锦)如图,四边形ABCD是正方形,点A,点B在⊙O上,边DA的延长线交⊙O于点E,对角线DB的延长线交⊙O于点F,连接EF并延长至点G,使∠FBG=∠FAB.
(1)求证:BG与⊙O相切;
(2)若⊙O的半径为1,求AF的长.
【解答】解:(1)连接BE,
∵四边形ABCD是正方形,
∴∠BAE=90°,
∴BE是圆O的直径,
∵∠BAF+∠EAF=90°,∠EAF=∠EBF,∠FBG=∠FAB,
∴∠FBG+∠EBF=90°,
∴∠OBG=90°,
故BG是圆O的切线;
(2)如图,连接OA,OF,
∵四边形ABCD是正方形,BE是圆的直径,
∴∠EFD=90°,∠FDE=45°,
∴∠FED=45°,
∴∠AOF=90°,
∵OA=OF=1,
∴AF2=AO2+FO2=1+1=2,
∴AF=,AF=﹣(舍去).
14. (2022•辽宁)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.
(1)求证:BF与⊙O相切;
(2)若AP=OP,cosA=,AP=4,求BF的长.
【解答】(1)证明:连接OB,
∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠ABD=180°﹣∠ABC=90°,
∵点F为DE的中点,
∴BF=EF=AD,
∴∠FEB=∠FBE,
∵∠AEP=∠FEB,
∴∠FBE=∠AEP,
∵PD⊥AC,
∴∠EPA=90°,
∴∠A+∠AEP=90°,
∵OA=OB,
∴∠A=∠OBA,
∴∠OBA+∠FBE=90°,
∴∠OBF=90°,
∵OB是⊙O的半径,
∴BF与⊙O相切;
(2)解:在Rt△AEP中,cosA=,AP=4,
∴AE===5,
∴PE===3,
∵AP=OP=4,
∴OA=OC=2AP=8,
∴PC=OP+OC=12,
∵∠A+∠AEP=90°,∠A+∠C=90°,
∴∠AEP=∠C,
∵∠APE=∠DPC=90°,
∴△APE∽△DPC,
∴=,
∴=,
∴DP=16,
∴DE=DP﹣PE=16﹣3=13,
∴BF=DE=,
∴BF的长为.
六.几何变换综合题(共1小题)
15. (2022•辽宁)在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.
(1)如图①,当α=20°时,∠AEB的度数是 45° ;
(2)如图②,当0°<α<90°时,求证:BD+2CE=AE;
(3)当0°<α<180°,AE=2CE时,请直接写出的值.
【解答】(1)解:∵线段AB绕点A逆时针旋转α至AD,α=20°,
∴∠BAD=20°,AB=AD,
∴∠ADB=∠ABD=×(180°﹣20°)=80°,
又∵∠BAC=90°,
∴∠DAC=70°,
∵AE平分∠DAC,
∴∠DAE=∠DAC=35°,
∴∠AEB=∠ADB﹣∠DAE=80°﹣35°=45°,
故答案为:45°;
(2)证明:延长DB到F,使BF=CE,连接AF,
∵AB=AC,AD=AB,
∴AD=AC,
∵AE平分∠DAC,
∴∠DAE=∠CAE,
又∵AE=AE,
∴△ADE≌△ACE(SAS),
∴∠DEA=∠CEA,∠ADE=∠ACE,DE=CE,
∵AB=AD,
∴∠ABD=∠ADB,
∵∠ADE+∠ADB=180°,
∴∠ACE+∠ABD=180°,
∵∠BAC=90°,
∴∠BEC=360°﹣(∠ACE+∠ABD)﹣∠BAC=360°﹣180°﹣90°=90°,
∵∠DEA=∠CEA,
∴∠DEA=∠CEA=90°=45°,
∵∠ABF+∠ABD=180°,∠ACE+∠ABD=180°,
∴∠ABF=∠ACE,
∵AB=AC,BF=CE,
∴△ABF≌△ACE(SAS),
∴AF=AE,∠AFB=∠AEC=45°,
∴∠FAE=180°﹣45°﹣45°=90°,
在Rt△AFE中,∠FAE=90°,
∵cos∠AEF=,
∴EF=,
∵EF=BF+BD+DE=CE+BD+CE=BD+2CE,
∴BD+2CE=AE;
(3)解:如图3,当0°<α<90°时,
由(2)可知BD+2CE=AE,CE=DE,
∵AE=2CE,
∴BD+2DE=2DE,
∴=2;
如图4,当90°<α<180°时,
在BD上截取BF=DE,连接AF,方法同(2)可证△ADE≌△ACE(SAS),
∴DE=CE,
∵AB=AC=AD,
∴∠ABF=∠ADE,
∴△ABF≌△ADE(SAS),
∴AF=AE,∠BAF=∠DAE,
又∵∠DAE=∠CAE,
∴∠BAF=∠CAE,
∴∠EAF=∠FAC+∠CAE=∠FAC+∠BAF=∠BAC=90°,
∴△AEF是等腰直角三角形,
∴EF=AE,
∴BD=BF+DE+EF=2DE+AE,
∵AE=2CE=2DE,
∴BD=2DE+2DE,
∴+2.
综上所述,的值为2+2或2﹣2.
七.相似三角形的判定与性质(共3小题)
16. (2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是 3或2 .
【解答】解:在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠BAC=30°,
∴AB=2BC=2×2=4,
∴AC===2,
当∠APQ=90°时,如图1,
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠BAC=30°,
∴AB=2BC=2×2=4,
∴AC===2,
∵∠APQ=∠ACB=90°,∠CAP=∠BAC,
∴△CAP∽△BAC,
∴,即,
∴AP=3,
当∠AQP=90°时,如图2,
∵PD⊥AC,PE⊥BC,∠ACB=90°,
∴四边形DPEC是矩形,
∴CQ=QP,
∵∠AQP=90°,
∴AQ垂直平分CP,
∴AP=AC=2,
综上所述,当△APQ为直角三角形时,AP的长是3或2,
故答案为:3或2.
17. (2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.
【解答】(1)证明:∵AC是直径,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵∠ACD=∠B,∠B=∠DAF,
∴∠DAF+∠DAC=90°,
∴OA⊥AF,
∵OA是半径,
∴AF是⊙O的切线;
(2)解:作DH⊥AC于点H,
∵⊙O的半径为5,
∴AC=10,
∵∠AHD=∠ADC,∠DAH=∠CAD,
∴△ADH∽△ACD,
∴,
∴AD2=AH•AC,
∴AH=,
∵AD是△AEF的中线,∠EAF=90°,
∴AD=ED,
∴AE=2AH=.
18. (2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D和点E.
(1)求证:BC与⊙O相切;
(2)若sin∠BAC=,CE=6,求OF的长.
【解答】(1)证明:连接OE,
∵四边形ODEF是平行四边形,
∴EF∥OD,EF=OD,
∵OA=OD,
∴EF∥OA,EF=OA,
∴四边形AOEF是平行四边形,
∴OE∥AC,
∴∠OEB=∠ACB,
∵∠ACB=90°,
∴∠OEB=90°,
∴OE⊥BC,
∵OE是⊙O的半径,
∴BC与⊙O相切;
(2)解:过点F作FH⊥OA于点H,
∵四边形AOEF是平行四边形,
∴EF∥OA,
∴∠CFE=∠CAB,
∴sin∠CFE=sin∠CAB=,
在Rt△CEF中,∠ACB=90°,
∵CE=6,sin∠CFE=,
∴EF=,
∵四边形AOEF是平行四边形,且OA=OE,
∴▱AOEF是菱形,
∴AF=AO=EF=10,
在Rt△AFH中,∠AHF=90°,
∵AF=10,sin∠CAB=,
∴FH=AF,
∵AH2=AF2﹣FH2,
∴AH=,
∴OH=AO﹣AH=10﹣8=2,
在Rt△OFH中,∠FHO=90°,
∵OF2=OH2+FH2,
∴OF=,
∴OF=2.
八.解直角三角形(共2小题)
19. (2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.
(1)请判断直线CD与⊙O的位置关系,并说明理由;
(2)若sin∠ECD=,CE=5,求⊙O的半径.
【解答】解:(1)结论:CD是⊙O的切线.
理由:连接OC.
∵OC=OB,
∴∠OCB=∠OBC,
∵BC平分∠ABD,
∴∠OBC=∠CBE,
∴∠OCB=∠CBE,
∴OC∥BD,
∵CD⊥BD,
∴CD⊥OC,
∵OC是半径,
∴CD是⊙O的切线;
(2)设OA=OC=r,设AE交OC于点J.
∵AB是直径,
∴∠AEB=90°,
∵OC⊥DC,CD⊥DB,
∴∠D=∠DCJ=∠DEJ=90°,
∴四边形CDEJ是矩形,
∴∠CJE=90°,CD=EJ,CJ=DE,
∴OC⊥AE,
∴AJ=EJ,
∵sin∠ECD==,CE=5,
∴DE=3,CD=3,
∴AJ=EJ=CD=4,CJ=DE=3,
在Rt△AJO中,r2=(r﹣3)2+42,
∴r=,
∴⊙O的半径为.
20. (2022•大连)AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,过点A作⊙O的切线,与DO的延长线相交于点E.
(1)如图1,求证∠B=∠E;
(2)如图2,连接AD,若⊙O的半径为2,OE=3,求AD的长.
【解答】(1)证明:∵AE与⊙O相切于点A
∴AB⊥AE,
∴∠A=90°,
∵OD⊥BC,
∴∠BDO=∠A=90°,
∵∠BOD=∠AOE,
∴∠B=∠E.
(2)如图2,连接AC,
∵OA=2,OE=3,
∴根据勾股定理得AE=,
∵∠B=∠E,∠BOD=∠EOA,
∴△BOD∽△EOA,
∴=,
∴=,
∴BD=,
∴CD=BD=,
∵AB是⊙O的直径,
∴∠C=90°,
在Rt△ABC中,根据勾股定理得AC=,
在Rt△ACD中,根据勾股定理得AD=
=
=.
辽宁省2022年中考数学卷真题分题型分层汇编-10解答题(基础提升): 这是一份辽宁省2022年中考数学卷真题分题型分层汇编-10解答题(基础提升),共25页。试卷主要包含了77,cs50°≈0,00,6,,3+76等内容,欢迎下载使用。
辽宁省2022年中考数学卷真题分题型分层汇编-08解答题(基础题): 这是一份辽宁省2022年中考数学卷真题分题型分层汇编-08解答题(基础题),共19页。试卷主要包含了﹣2+|﹣2|,计算,﹣2,,其中m=2,先化简,再求值,﹣1,÷,其中x=6,÷,其中a=4等内容,欢迎下载使用。
辽宁省2022年中考数学卷真题分题型分层汇编-11解答题(中档题): 这是一份辽宁省2022年中考数学卷真题分题型分层汇编-11解答题(中档题),共73页。试卷主要包含了,连接BC,,与y轴相交于点C,连接AC等内容,欢迎下载使用。