所属成套资源:2022年中考数学基础题提分讲练专题(含答案)
2022年中考数学基础题提分讲练专题:21 以平行四边形为背景的证明与计算(含答案)
展开这是一份2022年中考数学基础题提分讲练专题:21 以平行四边形为背景的证明与计算(含答案),共24页。
专题21 以平行四边形为背景的证明与计算
考点分析
【例1】在中,BE平分交AD于点E.
(1)如图1,若,,求的面积;
(2)如图2,过点A作,交DC的延长线于点F,分别交BE,BC于点G,H,且.求证:.
【答案】(1);(2)证明见解析.
【解析】
(1)解:作于O,如图1所示:
∵四边形ABCD是平行四边形,
∴,,,,
∴,,
∴,
∵BE平分,
∴,
∴,
∴,
∴的面积;
(2)证明:作交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:
∵,,
∴,,
∴,
∴,
∴,
∵,,
∴,
∴,
∵,
∴,
在和中,,
∴,
∴,
∵,,
∴,,
∵,
∴,
在和中,,
∴,
∴,
∴.
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
【例2】在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连结CM,若CM=1,则FG的长为 .
(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
【答案】(1)证明见解析;(2)2,9.
【解析】
感知:∵四边形ABCD是正方形,
∴AB=BC,∠BCE=∠ABC=90°,
∴∠ABE+∠CBE=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠BAF=∠CBE,
在△ABF和△BCE中,
,
∴△ABF≌△BCE(ASA);
探究:(1)如图②,
过点G作GP⊥BC于P,
∵四边形ABCD是正方形,
∴AB=BC,∠A=∠ABC=90°,
∴四边形ABPG是矩形,
∴PG=AB,∴PG=BC,
同感知的方法得,∠PGF=∠CBE,
在△PGF和△CBE中,
,
∴△PGF≌△CBE(ASA),
∴BE=FG;
(2)由(1)知,FG=BE,
连接CM,
∵∠BCE=90°,点M是BE的中点,
∴BE=2CM=2,
∴FG=2,
故答案为:2.
应用:同探究(2)得,BE=2ME=2CM=6,
∴ME=3,
同探究(1)得,CG=BE=6,
∵BE⊥CG,
∴S四边形CEGM=CG×ME=×6×3=9,
故答案为:9.
【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.
考点集训
1.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.
(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
(2)如图2,①求证:BP=BF;
②当AD=25,且AE<DE时,求cos∠PCB的值;
③当BP=9时,求BE•EF的值.
【答案】(1)证明见解析;(2)①证明见解析;②;③108.
【解析】
(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,
∵E是AD中点,
∴AE=DE,
在△ABE和△DCE中,,
∴△ABE≌△DCE(SAS);
(2)①在矩形ABCD,∠ABC=90°,
∵△BPC沿PC折叠得到△GPC,
∴∠PGC=∠PBC=90°,∠BPC=∠GPC,
∵BE⊥CG,
∴BE∥PG,
∴∠GPF=∠PFB,
∴∠BPF=∠BFP,
∴BP=BF;
②当AD=25时,
∵∠BEC=90°,
∴∠AEB+∠CED=90°,
∵∠AEB+∠ABE=90°,
∴∠CED=∠ABE,
∵∠A=∠D=90°,
∴△ABE∽△DEC,
∴,
设AE=x,
∴DE=25﹣x,
∴,
∴x=9或x=16,
∵AE<DE,
∴AE=9,DE=16,
∴CE=20,BE=15,
由折叠得,BP=PG,
∴BP=BF=PG,
∵BE∥PG,
∴△ECF∽△GCP,
∴,
设BP=BF=PG=y,
∴,
∴y=,
∴BP=,
在Rt△PBC中,PC=,cos∠PCB==;
③如图,连接FG,
∵∠GEF=∠BAE=90°,
∵BF∥PG,BF=PG=BP,
∴▱BPGF是菱形,
∴BP∥GF,
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴,
∴BE•EF=AB•GF=12×9=108.
【点睛】
此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.
2.如图,在正方形中,点是的中点,连接,过点作交于点,交于点.
(1)证明:;
(2)连接,证明:.
【答案】(1)见解析;(2)见解析.
【解析】
证明:(1)四边形是正方形,
,
又,
,
,
(2)如图所示,延长交的延长线于,
是的中点,
,
又,
,
,
即是的中点,
又,
中,.
【点睛】
本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
3.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)证明:∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,BD⊥EF,
设BE=x,则 DE=x,AE=6-x,
在Rt△ADE中,DE2=AD2+AE2,
∴x2=42+(6-x)2,
解得:x= ,
∵BD= =2,
∴OB=BD=,
∵BD⊥EF,
∴EO==,
∴EF=2EO=.
点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键
4.如图,在四边形中,,延长到E,使,连接交于点F,点F是的中点.求证:
(1).
(2)四边形是平行四边形.
【答案】(1)见解析;(2)见解析
【解析】
证明:(1)∵,
∴,
∵点F是的中点,
∴,
在与中,,
∴;
(2)∵,
∴,
∵,
∴,
∵,
∴四边形是平行四边形.
【点睛】
本题考查全等三角形的判定和性质、平行四边形判定定理,解题的关键是熟练掌握全等三角形的判定和性质、平行四边形判定定理.
5.已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.
【答案】证明见解析
【解析】
证明:(1) ∵四边形ABCD是平行四边形,∴AB∥DC ,AD∥BC.
∴∠E=∠F,∠DAB=∠BCD.
∴∠EAM=∠FCN.
又∵AE=CF
∴△AEM≌△CFN(ASA).
(2) ∵由(1)△AEM≌△CFN
∴AM=CN.
又∵四边形ABCD是平行四边形
∴ABCD
∴BMDN.
∴四边形BMDN是平行四边形.
6.已知:在矩形中,是对角线,于点,于点;
(1)如图1,求证:;
(2)如图2,当时,连接.,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形面积的.
【答案】(1)详见解析;(2)的面积的面积的面积的面积矩形面积的.
【解析】
(1)证明:∵四边形是矩形,
∴, ,,
∴,
∵于点,于点,
∴,
在和中,,
∴,
∴;
(2)解:的面积的面积的面积的面积矩形面积的.
理由如下:
∵,
∴,
∵,
∴,
∵,
∴,
∴,,
∴的面积矩形的面积,
∵,
∴的面积矩形的面积;
作于,如图所示:
∵,
∴,
∴的面积矩形的面积,
同理:的面积矩形的面积.
【点睛】
本题主要考查了矩形的性质、全等三角形的判定与性质、直角三角形中角所对的直角边等于斜边的一半,灵活应用矩形的性质证全等,熟练掌握直角三角形角的性质是解题的关键.
7.如图,矩形的顶点,分别在菱形的边,上,顶点、在菱形的对角线上.
(1)求证:;
(2)若为中点,,求菱形的周长。
【答案】(1)证明见解析;(2)8.
【解析】
(1)∵四边形EFGH是矩形,
∴EH=FG,EH∥FG,
∴∠GFH=∠EHF,
∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,
∴∠BFG=∠DHE,
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠GBF=∠EDH,
∴△BGF≌△DEH(AAS),
∴BG=DE;
(2)连接EG,
∵四边形ABCD是菱形,
∴AD=BC,AD∥BC,
∵E为AD中点,
∴AE=ED,
∵BG=DE,
∴AE=BG,AE∥BG,
∴四边形ABGE是平行四边形,
∴AB=EG,
∵EG=FH=2,
∴AB=2,
∴菱形ABCD的周长=8.
【点睛】
本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.
8.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.
(1)求证:AD2=DP•PC;
(2)请判断四边形PMBN的形状,并说明理由;
(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.
【答案】(1)证明见解析;(2)四边形PMBN是菱形,理由见解析;(3)
【解析】
解:(1)过点P作PG⊥AB于点G,
∴易知四边形DPGA,四边形PCBG是矩形,
∴AD=PG,DP=AG,GB=PC
∵∠APB=90°,
∴∠APG+∠GPB=∠GPB+∠PBG=90°,
∴∠APG=∠PBG,
∴△APG∽△PBG,
∴,
∴PG2=AG•GB,
即AD2=DP•PC;
(2)∵DP∥AB,
∴∠DPA=∠PAM,
由题意可知:∠DPA=∠APM,
∴∠PAM=∠APM,
∵∠APB-∠PAM=∠APB-∠APM,
即∠ABP=∠MPB
∴AM=PM,PM=MB,
∴PM=MB,
又易证四边形PMBN是平行四边形,
∴四边形PMBN是菱形;
(3)由于,
可设DP=k,AD=2k,
由(1)可知:AG=DP=k,PG=AD=2k,
∵PG2=AG•GB,
∴4k2=k•GB,
∴GB=PC=4k,
AB=AG+GB=5k,
∵CP∥AB,
∴△PCF∽△BAF,
∴,
∴,
又易证:△PCE∽△MAE,AM=AB=,
∴
∴,
∴EF=AF-AE=AC-AC=AC,
∴.
【点睛】
本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.
9.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG
(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.
(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系.请写出你的猜想,并加以证明.
【答案】(1)EG=CG;EG⊥CG(2)EG=CG;EG⊥CG,证明见解析.
【解析】
解:(1)EG=CG,EG⊥CG.
(2)EG=CG,EG⊥CG.
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,∠F=45°.
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
又∵FG=DG,
∠CMG=∠EMC=45°,
∴∠F=∠GMC.
∵在△GFE与△GMC中,
∴△GFE≌△GMC(SAS).
∴EG=CG,∠FGE=∠MGC.
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
【点睛】
此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.
考点:旋转的性质;全等三角形的判定与性质;正方形的性质.
10.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
【答案】(1)、(2)证明见解析(3)108
【解析】
(1)如图1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如图2,延长AD至F,使DF=BE,连接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
AE=AB-BE=12-4=8,
设DF=x,则AD=12-x,
根据(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
解得:x=6.
则DE=4+6=10.
【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
11.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.
(1)当∠OAD=30°时,求点C的坐标;
(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;
(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.
【答案】(1)点C的坐标为(2,3+2);(2)OA=3;(3)OC的最大值为8,cos∠OAD=.
【解析】
(1)如图1,过点C作CE⊥y轴于点E,
∵矩形ABCD中,CD⊥AD,
∴∠CDE+∠ADO=90°,
又∵∠OAD+∠ADO=90°,
∴∠CDE=∠OAD=30°,
∴在Rt△CED中,CE=CD=2,DE==2,
在Rt△OAD中,∠OAD=30°,
∴OD=AD=3,
∴点C的坐标为(2,3+2);
(2)∵M为AD的中点,
∴DM=3,S△DCM=6,
又S四边形OMCD=,
∴S△ODM=,
∴S△OAD=9,
设OA=x、OD=y,则x2+y2=36,xy=9,
∴x2+y2=2xy,即x=y,
将x=y代入x2+y2=36得x2=18,
解得x=3(负值舍去),
∴OA=3;
(3)OC的最大值为8,
如图2,M为AD的中点,
∴OM=3,CM==5,
∴OC≤OM+CM=8,
当O、M、C三点在同一直线时,OC有最大值8,
连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,
∵∠CDM=∠ONM=90°,∠CMD=∠OMN,
∴△CMD∽△OMN,
∴,即,
解得MN=,ON=,
∴AN=AM﹣MN=,
在Rt△OAN中,OA=,
∴cos∠OAD=.
【点睛】
本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.
12.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.
【答案】 (1)详见解析
(2)详见解析
(3)58
【解析】
解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,,
∴△BCP≌△DCP(SAS).
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP.
∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.
∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=∠DCE.
∵AB∥CD,
∴∠DCE=∠ABC.
∴∠DPE=∠ABC.
(3)解:在菱形ABCD中,BC=DC,∠BCP=∠DCP,
在△BCP和△DCP中,
∴△BCP≌△DCP(SAS),
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC=58°,
故答案为:58.
相关试卷
这是一份2022年中考数学基础题提分讲练专题:23 以圆为背景的证明与计算(含答案),共22页。
这是一份2022年中考数学基础题提分讲练专题:22 以特殊的平行四边形为背景的证明与计算(含答案),共26页。
这是一份2022年中考数学基础题提分讲练专题:20 以相似三角形为背景的证明与计算(含答案),共32页。