|试卷下载
搜索
    上传资料 赚现金
    2022年浙江省衢州市菁才中学中考数学模拟试题含解析
    立即下载
    加入资料篮
    2022年浙江省衢州市菁才中学中考数学模拟试题含解析01
    2022年浙江省衢州市菁才中学中考数学模拟试题含解析02
    2022年浙江省衢州市菁才中学中考数学模拟试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省衢州市菁才中学中考数学模拟试题含解析

    展开
    这是一份2022年浙江省衢州市菁才中学中考数学模拟试题含解析,共24页。试卷主要包含了有下列四个命题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是(  )

    A.BC=CD B.AD∥BC
    C.AD=BC D.点A与点C关于BD对称
    2.下列说法正确的是(  )
    A.﹣3是相反数 B.3与﹣3互为相反数
    C.3与互为相反数 D.3与﹣互为相反数
    3.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是(  )

    A. B. C. D.
    4.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为(  )
    A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
    5.一元二次方程的根的情况是  
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法判断
    6.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
    ①若C,O两点关于AB对称,则OA=;
    ②C,O两点距离的最大值为4;
    ③若AB平分CO,则AB⊥CO;
    ④斜边AB的中点D运动路径的长为π.
    其中正确的是(  )

    A.①② B.①②③ C.①③④ D.①②④
    7.已知关于的方程,下列说法正确的是
    A.当时,方程无解
    B.当时,方程有一个实数解
    C.当时,方程有两个相等的实数解
    D.当时,方程总有两个不相等的实数解
    8.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    9.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为( )

    A.150° B.140° C.130° D.120°
    10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为(   )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知点、都在反比例函数的图象上,若,则k的值可以取______写出一个符合条件的k值即可.
    12.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
    13.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.

    14.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
    15.如图,在△ABC 中,AB=AC,BC=8. 是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则的值为_____________.

    16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.
    三、解答题(共8题,共72分)
    17.(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.

    (1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
    (2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
    (3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
    18.(8分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.

    19.(8分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.

    20.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
    (1)求二次函数的解析式和该二次函数图象的顶点的坐标.
    (2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

    21.(8分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.

    22.(10分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.

    23.(12分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.

    24.观察规律并填空.

    ______(用含n的代数式表示,n 是正整数,且 n ≥ 2)



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.
    【详解】
    ∵BD是∠ABC的角平分线,
    ∴∠ABD=∠CBD,
    又∵DC∥AB,
    ∴∠ABD=∠CDB,
    ∴∠CBD=∠CDB,
    ∴BC=CD.
    故选A.
    【点睛】
    此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.
    2、B
    【解析】
    符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.
    【详解】
    A、3和-3互为相反数,错误;
    B、3与-3互为相反数,正确;
    C、3与互为倒数,错误;
    D、3与-互为负倒数,错误;
    故选B.
    【点睛】
    此题考查相反数问题,正确理解相反数的定义是解答此题的关键.
    3、A
    【解析】
    由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.
    【详解】
    解:几何体从左到右的最高层数依次为1,2,3,
    所以主视图从左到右的层数应该为1,2,3,
    故选A.
    【点睛】
    本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.
    4、C
    【解析】
    根据题意列出代数式,化简即可得到结果.
    【详解】
    根据题意得:a÷(1−20%)=a÷= a(元),
    故答案选:C.
    【点睛】
    本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
    5、A
    【解析】
    把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.
    【详解】

    方程有两个不相等的实数根.
    故选A.
    【点睛】
    本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.
    6、D
    【解析】
    分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
    ②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
    ③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
    ④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
    详解:在Rt△ABC中,∵


    ①若C.O两点关于AB对称,如图1,
    ∴AB是OC的垂直平分线,

    所以①正确;
    ②如图1,取AB的中点为E,连接OE、CE,


    当OC经过点E时,OC最大,
    则C.O两点距离的最大值为4;
    所以②正确;
    ③如图2,当时,

    ∴四边形AOBC是矩形,
    ∴AB与OC互相平分,
    但AB与OC的夹角为不垂直,
    所以③不正确;
    ④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的

    则:
    所以④正确;
    综上所述,本题正确的有:①②④;
    故选D.
    点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
    7、C
    【解析】
    当时,方程为一元一次方程有唯一解.
    当时,方程为一元二次方程,的情况由根的判别式确定:
    ∵,
    ∴当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解.综上所述,说法C正确.故选C.
    8、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    9、B
    【解析】
    试题分析:如图,延长DC到F,则
    ∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.
    ∴∠ACD=180°-∠ECF=140°.
    故选B.

    考点:1.平行线的性质;2.平角性质.
    10、A
    【解析】
    试题解析:连接OE,OF,ON,OG,

    在矩形ABCD中,
    ∵∠A=∠B=90°,CD=AB=4,
    ∵AD,AB,BC分别与⊙O相切于E,F,G三点,
    ∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
    ∴四边形AFOE,FBGO是正方形,
    ∴AF=BF=AE=BG=2,
    ∴DE=3,
    ∵DM是⊙O的切线,
    ∴DN=DE=3,MN=MG,
    ∴CM=5-2-MN=3-MN,
    在Rt△DMC中,DM2=CD2+CM2,
    ∴(3+NM)2=(3-NM)2+42,
    ∴NM=,
    ∴DM=3+=,
    故选B.
    考点:1.切线的性质;3.矩形的性质.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-1
    【解析】
    利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值.
    【详解】
    解:点、都在反比例函数的图象上,,
    在每个象限内,y随着x的增大而增大,
    反比例函数图象在第一、三象限,

    的值可以取等,答案不唯一
    故答案为:.
    【点睛】
    本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
    12、
    【解析】
    列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
    【详解】
    列表如下:

    -2
    -1
    1
    2
    -2

    2
    -2
    -4
    -1
    2

    -1
    -2
    1
    -2
    -1

    2
    2
    -4
    -2
    2

    由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
    ∴积为大于-4小于2的概率为=,
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    13、40°
    【解析】
    根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
    【详解】
    根据旋转的性质,可得:AB=AD,∠BAD=100°,
    ∴∠B=∠ADB=×(180°−100°)=40°.
    故填:40°.
    【点睛】
    本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
    14、288°
    【解析】
    母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
    【详解】

    解:如图所示,在Rt△SOA中,SO=9,SA=15;
    则:
    设侧面属开图扇形的国心角度数为n,则由 得n=288°
    故答案为:288°.
    【点睛】
    本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.
    15、2
    【解析】
    【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.
    试题解析:如图,作AD⊥BC,垂足为D,连接OB,
    ∵AB=AC,∴BD=CD=BC=×8=4,
    ∴AD垂直平分BC,
    ∴AD过圆心O,
    在Rt△OBD中,OD==3,
    ∴AD=AO+OD=8,
    在Rt△ABD中,tan∠ABC==2,
    故答案为2.

    【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.
    16、-1
    【解析】
    试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.
    考点:反比例外函数k的几何意义.

    三、解答题(共8题,共72分)
    17、(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
    【解析】
    (1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;
    (2)利用待定系数法分别求出两个函数解析式,从而得出答案;
    (3)分0≤t<20、t=20和20≤t≤30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.
    【详解】
    解:(1)由图表数据观察可知y1与t之间是二次函数关系,
    设y1=a(t﹣0)(t﹣30)
    再代入t=5,y1=25可得a=﹣
    ∴y1=﹣t(t﹣30)(0≤t≤30)
    (2)由函数图象可知y2与t之间是分段的一次函数由图象可知:
    0≤t<20时,y2=2t,当20≤t≤30时,y2=﹣4t+120,
    ∴y2=,
    (3)当0≤t<20时,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2 ,
    可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,
    当20≤t≤30时,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2 ,
    可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,
    故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
    18、2.
    【解析】
    根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
    【详解】
    解:∵AD是△ABC的中线,且BC=10,
    ∴BD=BC=1.
    ∵12+122=22,即BD2+AD2=AB2,
    ∴△ABD是直角三角形,则AD⊥BC,
    又∵CD=BD,
    ∴AC=AB=2.
    【点睛】
    本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
    19、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
    【解析】
    方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
    (2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
    (3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
    NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
    方法二:(1)同方法一.
    (2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
    (3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
    【详解】
    方法一:
    解:
    (1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
    ∴对称轴x=2,
    令y=0,则x2﹣4x=0,
    解得x=0,x=4,
    ∴A(4,0),
    ∵P(1,﹣2),令x=1,则y=﹣3,
    ∴B(1,﹣3),
    ∴C(3,﹣3).
    (2)∵抛物线y=x2﹣2mx(m>1),
    ∴A(2m,0)对称轴x=m,
    ∵P(1,﹣m)
    把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
    ∴B(1,1﹣2m),
    ∴C(2m﹣1,1﹣2m),
    ∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
    PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
    AC2=1+(1﹣2m)2=2﹣4m+4m2,
    ∵△ACP为直角三角形,
    ∴当∠ACP=90°时,PA2=PC2+AC2,
    即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
    解得:m=,m=1(舍去),
    当∠APC=90°时,PA2+PC2=AC2,
    即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
    解得:m=,m=1,和1都不符合m>1,
    故m=.
    (3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
    ∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
    ∴Rt△FNP∽Rt△PBC,
    ∴NP:NF=BC:BP,即=,
    ∴y=2x﹣2﹣m,
    ∴直线PE的解析式为y=2x﹣2﹣m.
    令y=0,则x=1+,
    ∴E(1+m,0),
    ∴PE2=(﹣m)2+(m)2=,
    ∴=5m2﹣10m+5,解得:m=2,m=,
    ∴E(2,0)或E(,0),
    ∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
    令x=0,则y=﹣2﹣m,
    ∴E(0,﹣2﹣m)
    ∴PE2=(﹣2)2+12=5
    ∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
    ∴E(0,﹣4)
    ∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
    ∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
    方法二:
    (1)略.
    (2)∵P(1,﹣m),
    ∴B(1,1﹣2m),
    ∵对称轴x=m,
    ∴C(2m﹣1,1﹣2m),A(2m,0),
    ∵△ACP为直角三角形,
    ∴AC⊥AP,AC⊥CP,AP⊥CP,
    ①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
    ∴,m=﹣1(舍)
    ②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=,
    ③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=(舍)
    (3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
    ∴KCP=,
    △PEC是以P为直角顶点的等腰直角三角形,
    ∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
    ∵P(1,﹣m),
    ∴lPE:y=2x﹣2﹣m,
    ∵点E在坐标轴上,
    ∴①当点E在x轴上时,
    E(,0)且PE=PC,
    ∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴m2=5(m﹣1)2,
    ∴m1=2,m2=,
    ∴E1(2,0),E2(,0),
    ②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
    ∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴1=(m﹣1)2,
    ∴m1=2,m2=0(舍),
    ∴E(0,4),
    综上所述,(2,0)或(,0)或(0,﹣4).
    【点睛】
    本题主要考查二次函数的图象与性质.
    扩展:
    设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
    AB=.
    设平面内直线AB的解析式为:,直线CD的解析式为:
    (1)若AB//CD,则有:;
    (2)若AB⊥CD,则有:.
    20、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
    【解析】
    (1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
    【详解】
    (1)由题意得:x1+x2=3,x1x2=﹣2m,
    x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
    解得:m=2,
    抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
    顶点坐标为(,);
    (2)存在,理由:
    将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
    ∴点A、B的坐标为(0,2)、(,),
    一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
    ∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
    ∴PB==,
    AP==2
    过点B作BM⊥AB交x轴于点M,

    ∵∠MBP=∠AOP=90°,∠MPB=∠APO,
    ∴△APO∽△MPB,
    ∴ ,∴ ,
    ∴MP=,
    ∴OM=OP﹣MP=6﹣=,
    ∴点M(,0).
    【点睛】
    本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
    21、详见解析
    【解析】
    由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.
    【详解】
    证明:∵△ABC,△DEB都是等边三角形,
    ∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,
    ∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
    即∠ABE=∠CBD,
    在△ABE和△CBD中,
    ∵AB=CB,
    ∠ABE=∠CBD,
    BE=BD,,
    ∴△ABE≌△CBD(SAS),
    ∴∠BAE=∠BCD=60°,
    ∴∠BAE=∠BAC,
    ∴AB平分∠EAC.
    【点睛】
    本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
    22、(1)相切,理由见解析;(1)1.
    【解析】
    (1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;
    (1)根据勾股定理得出方程,求出方程的解即可.
    【详解】
    (1)直线BC与⊙O的位置关系是相切,

    理由是:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAB,
    ∴∠OAD=∠CAD,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵∠C=90°,
    ∴∠ODB=90°,即OD⊥BC,
    ∵OD为半径,
    ∴直线BC与⊙O的位置关系是相切;
    (1)设⊙O的半径为R,
    则OD=OF=R,
    在Rt△BDO中,由勾股定理得:OB=BD+OD,
    即(R+1) =(1)+R,
    解得:R=1,
    即⊙O的半径是1.
    【点睛】
    此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.
    23、证明见解析
    【解析】
    分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.
    详解:证明:在▱ABCD中,,
    ,又 ,≌,
    ,,又,
    四边形AGCH为平行四边形, .
    点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.
    24、
    【解析】
    由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.
    【详解】

    =
    =
    =.
    故答案为:.
    【点睛】
    本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.

    相关试卷

    浙江省衢州市菁才中学中考数学一模试题: 这是一份浙江省衢州市菁才中学中考数学一模试题,文件包含浙江省衢州市菁才中学中考数学一模试题原卷版docx、浙江省衢州市菁才中学中考数学一模试题解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    2023年浙江省衢州市菁才中学中考数学一模试题: 这是一份2023年浙江省衢州市菁才中学中考数学一模试题,文件包含2023年浙江省衢州市菁才中学中考数学一模试题解析版docx、2023年浙江省衢州市菁才中学中考数学一模试题原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    2023年浙江省衢州市柯城区菁才中学中考数学一模试卷(含解析): 这是一份2023年浙江省衢州市柯城区菁才中学中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map