|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年云南省遵义市仁怀县重点中学中考联考数学试卷含解析
    立即下载
    加入资料篮
    2022年云南省遵义市仁怀县重点中学中考联考数学试卷含解析01
    2022年云南省遵义市仁怀县重点中学中考联考数学试卷含解析02
    2022年云南省遵义市仁怀县重点中学中考联考数学试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年云南省遵义市仁怀县重点中学中考联考数学试卷含解析

    展开
    这是一份2022年云南省遵义市仁怀县重点中学中考联考数学试卷含解析,共24页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列说法中,正确的是(  )
    A.长度相等的弧是等弧
    B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
    C.经过半径并且垂直于这条半径的直线是圆的切线
    D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
    2.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为(  )
    A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)
    3.下列大学的校徽图案是轴对称图形的是( )
    A. B. C. D.
    4.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
    5.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是(  )

    A.红花、绿花种植面积一定相等
    B.紫花、橙花种植面积一定相等
    C.红花、蓝花种植面积一定相等
    D.蓝花、黄花种植面积一定相等
    6.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为  

    A. B. C. D.
    7.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是(  )

    A. B.
    C. D.
    8.下列运算正确的是(   )
    A.a2·a3﹦a6  B.a3+ a3﹦a6  C.|-a2|﹦a2    D.(-a2)3﹦a6
    9.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是(  )

    A.3 B.﹣ C.﹣3 D.﹣6
    10.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
    成绩
    人数(频数)
    百分比(频率)
    0


    5

    0.2
    10
    5

    15

    0.4
    20
    5
    0.1
    根据表中已有的信息,下列结论正确的是(  )
    A.共有40名同学参加知识竞赛
    B.抽到的同学参加知识竞赛的平均成绩为10分
    C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
    D.抽到同学参加知识竞赛成绩的中位数为15分
    11.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
    A.平均数 B.中位数 C.众数 D.方差
    12.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
    B.用计算器计算:•tan63°27′≈_____(精确到0.01).
    14.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.

    15.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
    16.关于的一元二次方程有两个相等的实数根,则的值等于_____.
    17.若,,则的值为 ________ .
    18.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
    小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
    (1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
    x
    0
    1
    2
    3
    4
    5
    6
    y
    5.2

    4.2
    4.6
    5.9
    7.6
    9.5
    说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
    (2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.

    20.(6分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
    求证:四边形是菱形若,,求四边形的面积
    21.(6分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.

    22.(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

    (1)求证:DE⊥AG;
    (1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
    ①在旋转过程中,当∠OAG′是直角时,求α的度数;
    ②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
    23.(8分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
    (1)求证:DE是⊙O的切线;
    (2)求EF的长.

    24.(10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
    请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.
    25.(10分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
    (1)点C坐标为 ;
    (2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
    (3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
    (4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.

    26.(12分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,
    (1)求DF的长;
    (2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

    27.(12分)已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
    (1)求二次函数y=ax2+bx的解析式;
    (2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据切线的判定,圆的知识,可得答案.
    【详解】
    解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
    B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
    C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
    D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
    故选:D.
    【点睛】
    本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
    2、C
    【解析】
    试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.
    考点:二次函数的性质.
    3、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、D
    【解析】
    先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
    【详解】
    解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
    故选:D.
    【点睛】
    本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    5、C
    【解析】
    图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
    【详解】
    解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
    故选择C.
    【点睛】
    本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
    6、A
    【解析】
    由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;
    【详解】
    函数与的图象在第二象限交于点,

    与反比例函数都是关于直线对称,
    与B关于直线对称,





    故选:A.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.
    7、A
    【解析】
    根据题意,将运动过程分成两段.分段讨论求出解析式即可.
    【详解】
    ∵BD=2,∠B=60°,
    ∴点D到AB距离为,
    当0≤x≤2时,
    y=;
    当2≤x≤4时,y=.
    根据函数解析式,A符合条件.
    故选A.
    【点睛】
    本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
    8、C
    【解析】
    根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
    【详解】
    a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
    【点睛】
    本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
    9、C
    【解析】
    如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
    【详解】
    解:如图,作CH⊥y轴于H.

    由题意B(0,2),

    ∴CH=1,
    ∵tan∠BOC=
    ∴OH=3,
    ∴C(﹣1,3),
    把点C(﹣1,3)代入,得到k2=﹣3,
    故选C.
    【点睛】
    本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    10、B
    【解析】
    根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
    【详解】
    ∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
    ∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
    ∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
    ∵0分同学10人,其频率为0.2,
    ∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
    ∵第25、26名同学的成绩为10分、15分,
    ∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
    故选:B.
    【点睛】
    本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
    11、D
    【解析】
    根据方差反映数据的波动情况即可解答.
    【详解】
    由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
    故选D.
    【点睛】
    本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    12、A
    【解析】
    试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
    解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
    从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
    综上所知这个几何体是圆柱.
    故选A.
    考点:由三视图判断几何体.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、20 5.1
    【解析】
    A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
    B、利用计算器计算可得.
    【详解】
    A、根据题意,此正多边形的边数为360°÷45°=8,
    则这个正多边形对角线的条数一共有=20,
    故答案为20;
    B、•tan63°27′≈2.646×2.001≈5.1,
    故答案为5.1.
    【点睛】
    本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
    14、
    【解析】
    解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.
    当x=0时,y=3,∴点B的坐标为(0,3);
    当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.
    ∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.
    ∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.
    故答案为.

    15、1
    【解析】
    根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
    【详解】
    ∵点(a,b)在一次函数y=2x-1的图象上,
    ∴b=2a-1,
    ∴2a-b=1,
    ∴4a-2b=6,
    ∴4a-2b-1=6-1=1,
    故答案为:1.
    【点睛】
    本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
    16、
    【解析】
    分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.
    详解:由题意得:△= ,∴ ,∴,即a(a-1)=1, ∴a-1=,





    故答案为-3.
    点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.
    17、-.
    【解析】
    分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
    详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.
    故答案为.
    点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.
    18、3
    【解析】
    分析:
    由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:,解此方程即可求得△EFC的面积.
    详解:
    ∵在△ABC中,点E,F分别是AC,BC的中点,
    ∴EF是△ABC的中位线,
    ∴EF∥AB,EF:AB=1:2,
    ∴△CEF∽△CAB,
    ∴S△CEF:S△CAB=1:4,
    设S△CEF=x,
    ∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,
    ∴,
    解得:,
    经检验:是所列方程的解.
    故答案为:3.
    点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
    【解析】
    (1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【详解】
    (1)根据题意,作图得,y=4.5故答案为:4.5
    (2)根据数据画图得

    (3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【点睛】
    本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
    20、(1)见解析;(2)S四边形ADOE =.
    【解析】
    (1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
    (2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴OA=OB=OC=OD.
    ∵平行四边形ADOE,
    ∴OD∥AE,AE=OD.
    ∴AE=OB.
    ∴四边形AOBE为平行四边形.
    ∵OA=OB,
    ∴四边形AOBE为菱形.
    (2)解:∵菱形AOBE,
    ∴∠EAB=∠BAO.
    ∵矩形ABCD,
    ∴AB∥CD.
    ∴∠BAC=∠ACD,∠ADC=90°.
    ∴∠EAB=∠BAO=∠DCA.
    ∵∠EAO+∠DCO=180°,
    ∴∠DCA=60°.
    ∵DC=2,
    ∴AD=.
    ∴SΔADC=.
    ∴S四边形ADOE =.
    【点睛】
    考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
    21、证明见解析.
    【解析】
    想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=FC+CD,
    ∴AC=FD,
    在△ABC 和△DEF 中,

    ∴△ABC≌△DEF(AAS)
    ∴BC=EF.
    【点睛】
    本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    22、(1)见解析;(1)30°或150°,的长最大值为,此时.
    【解析】
    (1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;
    (1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;
    ②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此时α=315°.
    【详解】
    (1)如图1,延长ED交AG于点H,

    ∵点O是正方形ABCD两对角线的交点,
    ∴OA=OD,OA⊥OD,
    ∵OG=OE,
    在△AOG和△DOE中,

    ∴△AOG≌△DOE,
    ∴∠AGO=∠DEO,
    ∵∠AGO+∠GAO=90°,
    ∴∠GAO+∠DEO=90°,
    ∴∠AHE=90°,
    即DE⊥AG;
    (1)①在旋转过程中,∠OAG′成为直角有两种情况:
    (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
    ∵OA=OD=OG=OG′,
    ∴在Rt△OAG′中,sin∠AG′O==,
    ∴∠AG′O=30°,
    ∵OA⊥OD,OA⊥AG′,
    ∴OD∥AG′,
    ∴∠DOG′=∠AG′O=30°∘,
    即α=30°;

    (Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
    同理可求∠BOG′=30°,
    ∴α=180°−30°=150°.
    综上所述,当∠OAG′=90°时,α=30°或150°.
    ②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,

    ∵正方形ABCD的边长为1,
    ∴OA=OD=OC=OB=,
    ∵OG=1OD,
    ∴OG′=OG=,
    ∴OF′=1,
    ∴AF′=AO+OF′=+1,
    ∵∠COE′=45°,
    ∴此时α=315°.
    【点睛】
    本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.
    23、 (1)见解析;(2) .
    【解析】
    (1)连接OD,根据切线的判定方法即可求出答案;
    (2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
    【详解】
    (1)连接OD,

    ∵△ABC是等边三角形,
    ∴∠C=∠A=∠B=60°,
    ∵OD=OB,
    ∴△ODB是等边三角形,
    ∴∠ODB=60°
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∴DE⊥AC
    ∴OD⊥DE,
    ∴DE是⊙O的切线
    (2)∵OD∥AC,点O是AB的中点,
    ∴OD为△ABC的中位线,
    ∴BD=CD=2
    在Rt△CDE中,
    ∠C=60°,
    ∴∠CDE=30°,
    ∴CE=CD=1
    ∴AE=AC﹣CE=4﹣1=3
    在Rt△AEF中,
    ∠A=60°,
    ∴EF=AE•sinA=3×sin60°=
    【点睛】
    本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
    24、见解析
    【解析】
    (1)如图:

    (2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.
    25、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
    【解析】
    (1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
    (2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
    (3)将点N的坐标代入y=x2,看是否符合解析式即可;
    (4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
    【详解】
    (1)∵A(2,2),B(3,2),D(2,3),
    ∴AD=BC=1, 则点 C(3,3),
    故答案为:(3,3);
    (2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:

    解得:,
    ∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
    ∴顶点 N 坐标为(,);
    (3)由(2)把 x=代入 y=x2=()2= ,
    ∴抛物线的顶点在函数 y=x2的图象上运动;
    (4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
    解得: 【点睛】
    本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.
    26、(1)1m.(1)1.5 m.
    【解析】
    (1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;
    (1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.
    【详解】
    解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,
    DF==1.
    答:DF长为1m.
    (1)分别做DM⊥AB,EN⊥AB,DH⊥EN,
    垂足分别为点M、N、H,
    在Rt△DBM中,sin∠DBM=,
    ∴DM=1•sin35°≈1.2.
    ∵∠EDC=∠CNB,∠DCE=∠NCB,
    ∴∠EDC=∠CBN=35°,
    在Rt△DEH中,cos∠DEH=,
    ∴EH=1.6•cos35°≈1.3.
    ∴EN=EH+HN=1.3+1.2=1.45≈1.5m.
    答:E点离墙面AB的最远距离为1.5 m.
    【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
    27、(1)y=x2+x;(2)t=-4,r=-1.
    【解析】
    (1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出结论;
    (2)进行分类讨论,分别求出t和r的值.
    【详解】
    (1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,
    Δ=0得:(b-1)2=0,得b=1,
    ∵对称轴为=1,
    ∴=1,
    ∴a=,
    ∴y=x2+x.
    (2)因为y=x2+x=(x-1)2+,
    所以顶点(1,)
    当-2 当x=r时,y最大=r2+r=1.5r,得r=-1,
    当x=-2时,y最小=-4,
    所以,这时t=-4,r=-1.
    当r≥1时,
    y最大=,所以1.5r=,
    所以r=,不合题意,舍去,
    综上可得,t=-4,r=-1.
    【点睛】
    本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.

    相关试卷

    2024年贵州省遵义市仁怀县中考数学最后一卷(含解析): 这是一份2024年贵州省遵义市仁怀县中考数学最后一卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2024年贵州省遵义市仁怀县中考数学最后一卷(含答案): 这是一份2024年贵州省遵义市仁怀县中考数学最后一卷(含答案),共11页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    云南省遵义市仁怀县重点中学2021-2022学年中考四模数学试题含解析: 这是一份云南省遵义市仁怀县重点中学2021-2022学年中考四模数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,实数﹣5.22的绝对值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map