云南省重点中学2022年十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.计算--|-3|的结果是( )
A.-1 B.-5 C.1 D.5
2.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )
A. B. C. D.
3.下列计算正确的是( )
A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab3
4.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是( )
A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
5.如图,与∠1是内错角的是( )
A.∠2 B.∠3
C.∠4 D.∠5
6.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )
A. B.
C. D.
7.下列各式中,正确的是( )
A.t5·t5 = 2t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t2·t3 = t5
8.若正六边形的半径长为4,则它的边长等于( )
A.4 B.2 C. D.
9.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )
A.5cm B.12cm C.16cm D.20cm
10.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )
A.0.334 B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
12.已知,则=_______.
13.化简代数式(x+1+)÷,正确的结果为_____.
14.如果不等式无解,则a的取值范围是 ________
15.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
16.点A(1,2),B(n,2)都在抛物线y=x2﹣4x+m上,则n=_____.
三、解答题(共8题,共72分)
17.(8分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.
求反比例函数的表达式;
若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.
18.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
19.(8分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,
(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;
(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;
(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.
20.(8分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.
(1)求二次函数的解析式;
(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
21.(8分)解方程组
22.(10分)已知,关于x的方程x2﹣mx+m2﹣1=0,
(1)不解方程,判断此方程根的情况;
(2)若x=2是该方程的一个根,求m的值.
23.(12分)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化简,再求值•(a2﹣b2),其中a=,b=﹣2.
24.如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.
(1)求抛物线的表达式;
(2)如图,当CP//AO时,求∠PAC的正切值;
(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.
【详解】
原式
故选:B.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2、A
【解析】
转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可
【详解】
奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:
P(奇数)= = .故此题选A.
【点睛】
此题主要考查了几何概率,正确应用概率公式是解题关键.
3、A
【解析】
分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.
详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A.
点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.
4、D
【解析】
利用旋转不变性即可解决问题.
【详解】
∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.
【点睛】
本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
5、B
【解析】
由内错角定义选B.
6、A
【解析】
由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.
【详解】
解:大正方形的面积-小正方形的面积=,
矩形的面积=,
故,
故选:A.
【点睛】
本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.
7、D
【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.
8、A
【解析】
试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.
考点:正多边形和圆.
9、D
【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
【详解】
延长AB、DC相交于F,则BFC构成直角三角形,
运用勾股定理得:
BC2=(15-3)2+(1-4)2=122+162=400,
所以BC=1.
则剪去的直角三角形的斜边长为1cm.
故选D.
【点睛】
本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解:334亿=3.34×1010
“点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.
【详解】
解:所有可能的结果如下表:
男1
男2
女1
女2
男1
(男1,男2)
(男1,女1)
(男1,女2)
男2
(男2,男1)
(男2,女1)
(男2,女2)
女1
(女1,男1)
(女1,男2)
(女1,女2)
女2
(女2,男1)
(女2,男2)
(女2,女1)
由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,
所以其概率为挑选的两位教师恰好是一男一女的概率为=,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
12、3
【解析】
依据可设a=3k,b=2k,代入化简即可.
【详解】
∵,
∴可设a=3k,b=2k,
∴=3
故答案为3.
【点睛】
本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.
13、2x
【解析】
根据分式的运算法则计算即可求解.
【详解】
(x+1+)÷
=
=
=2x.
故答案为2x.
【点睛】
本题考查了分式的混合运算,熟知分式的混合运算顺序及运算法则是解答本题的关键.
14、a≥1
【解析】
将不等式组解出来,根据不等式组无解,求出a的取值范围.
【详解】
解得,
∵无解,
∴a≥1.
故答案为a≥1.
【点睛】
本题考查了解一元一次不等式组,解题的关键是熟练的掌握解一元一次不等式组的运算法则.
15、或﹣.
【解析】
试题分析:当点F在OB上时,设EF交CD于点P,
可求点P的坐标为(,1).
则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
由题意可得:3+x=2(3﹣x),
解得:x=.
由对称性可求当点F在OA上时,x=﹣,
故满足题意的x的值为或﹣.
故答案是或﹣.
【点睛】
考点:动点问题.
16、1
【解析】
根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值.
【详解】
:∵点A(1,2),B(n,2)都在抛物线y=x2-4x+m上,
∴ ,
解得 或 ,
∴点B为(1,2)或(1,2),
∵点A(1,2),
∴点B只能为(1,2),
故n的值为1,
故答案为:1.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.
三、解答题(共8题,共72分)
17、(1)y= (1)(1,0)
【解析】
(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;
(1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.
【详解】
解:(1)∵点M(a,4)在直线y=1x+1上,
∴4=1a+1,
解得a=1,
∴M(1,4),将其代入y=得到:k=xy=1×4=4,
∴反比例函数y=(x>0)的表达式为y=;
(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,
∴当x=0时,y=1.
当y=0时,x=﹣1,
∴B(0,1),A(﹣1,0).
∵BC∥AD,
∴点C的纵坐标也等于1,且点C在反比例函数图象上,
将y=1代入y=,得1=,
解得x=1,
∴C(1,1).
∵四边形ABCD是平行四边形,
∴BC∥AD且BD=AD,
由B(0,1),C(1,1)两点的坐标知,BC∥AD.
又BC=1,
∴AD=1,
∵A(﹣1,0),点D在点A的右侧,
∴点D的坐标是(1,0).
【点睛】
考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.
18、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
19、(1)结论:BE=DG,BE⊥DG.理由见解析;(1)AG=1;(3)满足条件的AG的长为1或1.
【解析】
(1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;
(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO=∠AEG=45°,解直角三角形即可解决问题;
(3)分两种情形分别画出图形即可解决问题;
【详解】
(1)结论:BE=DG,BE⊥DG.
理由:如图①中,设BE交DG于点K,AE交DG于点O.
∵四边形ABCD,四边形AEFG都是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE=∠DAG,
∴△BAE≌△DAG(SAS),
∴BE=DG,∴∠AEB=∠AGD,
∵∠AOG=∠EOK,
∴∠OAG=∠OKE=90°,
∴BE⊥DG.
(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.
∵∠OAG=∠ODE=90°,
∴A,D,E,G四点共圆,
∴∠ADO=∠AEG=45°,
∵∠DAM=90°,
∴∠ADM=∠AMD=45°,
∴
∵DG=1DM,
∴
∵∠H=90°,
∴∠HDG=∠HGD=45°,
∴GH=DH=4,
∴AH=1,
在Rt△AHG中,
(3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.
易证△AHG≌△EDA,可得GH=AB=1,
∵DG=4DM.AM∥GH,
∴
∴DH=8,
∴AH=DH﹣AD=6,
在Rt△AHG中,
②如图3﹣1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK=BC=1.
∵AD∥GH,
∴
∵AD=1,
∴HG=10,
在Rt△AGH中,
综上所述,满足条件的AG的长为或.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
20、(1);(2)P点坐标为, ;(3) 或或或.
【解析】
(1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
【详解】
解:(1)∵A(-1,0),在上,
,解得,
∴二次函数的解析式为;
(2)在中,令可得,解得或,
,且,
∴经过、两点的直线为,
设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,
,
∴当时,四边形的面积最大,此时P点坐标为,
∴四边形的最大面积为;
(3),
∴对称轴为,
∴可设点坐标为,
,,
,,,
为直角三角形,
∴有、和三种情况,
①当时,则有,即,解得或,此时点坐标为或;
②当时,则有,即,解得,此时点坐标为;
③当时,则有,即,解得,此时点坐标为;
综上可知点的坐标为或或或.
【点睛】
本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
21、
【解析】
将②×3,再联立①②消未知数即可计算.
【详解】
解:
②得: ③
①+③得:
把代入③得
∴方程组的解为
【点睛】
本题考查二元一次方程组解法,关键是掌握消元法.
22、(1)证明见解析;(2)m=2或m=1.
【解析】
(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
(2)将x=2代入方程得到关于m的方程,解之可得.
【详解】
(1)∵△=(﹣m)2﹣4×1×(m2﹣1)
=m2﹣m2+4
=4>0,
∴方程有两个不相等的实数根;
(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
整理,得:m2﹣8m+12=0,
解得:m=2或m=1.
【点睛】
本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
23、 (1)-2 (2)-
【解析】
试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
(2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
=2﹣2×+1﹣3
=2﹣+1﹣3
=﹣2;
(2)•(a2﹣b2)
=•(a+b)(a﹣b)
=a+b,
当a=,b=﹣2时,原式=+(﹣2)=﹣.
24、(1)抛物线的表达式为;(2);(3)P点的坐标是.
【解析】
分析:
(1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;
(2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,结合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;
(3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.
详解:
(1)∵直线y=x+1经过点A、C,点A在x轴上,点C在y轴上
∴A点坐标是(﹣1,0),点C坐标是(0,1),
又∵抛物线过A,C两点,
∴
解得,
∴抛物线的表达式为;
(2)作PH⊥AC于H,
∵点C、P在抛物线上,CP//AO, C(0,1),A(-1,0)
∴P(-2,1),AC=,
∴PC=2,,
∴PH=,
∵A(﹣1,0),C(0,1),
∴∠CAO=15°.
∵CP//AO,
∴∠ACP=∠CAO=15°,
∵PH⊥AC,
∴CH=PH=,
∴.
∴;
(3)∵,
∴抛物线的对称轴为直线,
∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,
∴PQ∥AO,且PQ=AO=1.
∵P,Q都在抛物线上,
∴P,Q关于直线对称,
∴P点的横坐标是﹣3,
∵当x=﹣3时,,
∴P点的坐标是.
点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt△APH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ∥AO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.
【详解】
请在此输入详解!
云南省昆明盘龙区联考2021-2022学年十校联考最后数学试题含解析: 这是一份云南省昆明盘龙区联考2021-2022学年十校联考最后数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
盐城市重点中学2022年十校联考最后数学试题含解析: 这是一份盐城市重点中学2022年十校联考最后数学试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,函数中,x的取值范围是,二次函数y=,函数y=的自变量x的取值范围是,tan45º的值为,已知点P等内容,欢迎下载使用。
安徽淮南寿县重点中学2022年十校联考最后数学试题含解析: 这是一份安徽淮南寿县重点中学2022年十校联考最后数学试题含解析,共17页。试卷主要包含了答题时请按要求用笔,已知x=2﹣,则代数式等内容,欢迎下载使用。