|试卷下载
搜索
    上传资料 赚现金
    2022年山西省运城市盐湖区达标名校初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022年山西省运城市盐湖区达标名校初中数学毕业考试模拟冲刺卷含解析01
    2022年山西省运城市盐湖区达标名校初中数学毕业考试模拟冲刺卷含解析02
    2022年山西省运城市盐湖区达标名校初中数学毕业考试模拟冲刺卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山西省运城市盐湖区达标名校初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022年山西省运城市盐湖区达标名校初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,估计的值在,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为(  )
    A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
    2.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为(  )

    A.15° B.55° C.65° D.75°
    3.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为(  )
    A.﹣=10 B.﹣=10
    C.﹣=10 D. +=10
    4.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度(  )
    A.1 B.5 C.1或5 D.2或4
    5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是(  )
    A.6π B.4π C.8π D.4
    6.估计的值在( )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    7.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于(  )

    A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
    8.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )

    A.160米 B.(60+160) C.160米 D.360米
    9.下列计算正确的是(  )
    A. B.(﹣a2)3=a6 C. D.6a2×2a=12a3
    10.如图,直线AB∥CD,则下列结论正确的是(  )

    A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.
    12.计算的结果等于______________________.
    13.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.

    14.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.

    15.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.
    16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm.

    17.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.

    三、解答题(共7小题,满分69分)
    18.(10分)已知反比例函数的图象过点A(3,2).
    (1)试求该反比例函数的表达式;
    (2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

    19.(5分)(1)(问题发现)小明遇到这样一个问题:
    如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
    (1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
    (2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
    不变),试猜想AD与DE之间的数量关系,并证明你的结论.
    (3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
    请直接写出△ABC与△ADE的面积之比.

    20.(8分)(1)问题发现:
    如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为   ;
    (2)深入探究:
    如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
    (3)拓展延伸:
    如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.

    21.(10分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
    (1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为   度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为   ;
    (2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
    (3)PA、PB、PC满足的等量关系为   .

    22.(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
    23.(12分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
    24.(14分)计算: .



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:
    686000=6.86×105,
    故选:D.
    2、D
    【解析】
    根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
    【详解】
    解:∵∠CDE=165°,∴∠ADE=15°,
    ∵DE∥AB,∴∠A=∠ADE=15°,
    ∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,
    故选D.
    【点睛】
    本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
    3、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    4、C
    【解析】
    由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
    【详解】
    ∵点C是劣弧AB的中点,
    ∴OC垂直平分AB,
    ∴DA=DB=3,
    ∴OD=,
    若△POC为直角三角形,只能是∠OPC=90°,
    则△POD∽△CPD,
    ∴,
    ∴PD2=4×1=4,
    ∴PD=2,
    ∴PB=3﹣2=1,
    根据对称性得,
    当P在OC的左侧时,PB=3+2=5,
    ∴PB的长度为1或5.

    故选C.
    【点睛】
    考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
    5、A
    【解析】
    根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
    解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
    那么它的表面积=2π×2+π×1×1×2=6π,故选A.
    6、D
    【解析】
    寻找小于26的最大平方数和大于26的最小平方数即可.
    【详解】
    解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:
    ,故选择D.
    【点睛】
    本题考查了二次根式的相关定义.
    7、A
    【解析】
    根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
    【详解】
    由数轴可知,b<a<0<c,
    ∴c-a>0,a+b<0,
    则|c-a|-|a+b|=c-a+a+b=c+b,
    故选A.
    【点睛】
    本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
    8、C
    【解析】
    过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.
    【详解】
    如图所示,过点A作AD⊥BC于点D.

    在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;
    在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.
    ∴BC=BD+DC=m.
    故选C.
    【点睛】
    本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.
    9、D
    【解析】
    根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.
    【详解】
    ,A选项错误;(﹣a2)3=- a6,B错误;,C错误;. 6a2×2a=12a3 ,D正确;故选:D.
    【点睛】
    本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.
    10、D
    【解析】
    分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
    详解:如图,∵AB∥CD,
    ∴∠3+∠5=180°,
    又∵∠5=∠4,
    ∴∠3+∠4=180°,
    故选D.

    点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3:4
    【解析】
    由于相似三角形的相似比等于对应中线的比,
    ∴△ABC与△DEF对应中线的比为3:4
    故答案为3:4.
    12、
    【解析】
    根据完全平方式可求解,完全平方式为
    【详解】

    【点睛】
    此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
    13、50°
    【解析】
    利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.
    【详解】
    ∵AB∥CD,
    ∴∠EFC=∠2=130°,
    ∴∠1=180°-∠EFC=50°,
    故答案为50°
    【点睛】
    本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    14、40°
    【解析】
    根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
    【详解】
    根据旋转的性质,可得:AB=AD,∠BAD=100°,
    ∴∠B=∠ADB=×(180°−100°)=40°.
    故填:40°.
    【点睛】
    本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
    15、1.
    【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.
    点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    16、36.
    【解析】
    试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.
    ∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.
    考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.
    17、30
    【解析】
    试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.
    考点:折叠图形的性质

    三、解答题(共7小题,满分69分)
    18、(1);(2)MB=MD.
    【解析】
    (1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;
    (2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.
    【详解】
    (1)将A(3,2)代入中,得2,∴k=6,
    ∴反比例函数的表达式为.
    (2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
    ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,
    即OC·OB=12,
    ∵OC=3,∴OB=4,即n=4,∴,
    ∴MB=,MD=,∴MB=MD.
    【点睛】
    本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.
    19、(1)AD=DE;(2)AD=DE,证明见解析;(3).
    【解析】
    试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
    试题解析:(10分)
    (1)AD=DE.
    (2)AD=DE.
    证明:如图2,过点D作DF//AC,交AC于点F,
    ∵△ABC是等边三角形,
    ∴AB=BC,∠B=∠ACB=∠ABC=60°.
    又∵DF//AC,
    ∴∠BDF=∠BFD=60°
    ∴△BDF是等边三角形,BF=BD,∠BFD=60°,
    ∴AF=CD,∠AFD=120°.
    ∵EC是外角的平分线,
    ∠DCE=120°=∠AFD.
    ∵∠ADC是△ABD的外角,
    ∴∠ADC=∠B+∠FAD=60°+∠FAD.
    ∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
    ∴∠FAD=∠EDC.
    ∴△AFD≌△DCE(ASA),
    ∴AD=DE;
    (3).

    考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
    20、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
    【解析】
    (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
    (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
    (3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
    【详解】
    (1)NC∥AB,理由如下:
    ∵△ABC与△MN是等边三角形,
    ∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
    ∴∠BAM=∠CAN,
    在△ABM与△ACN中,

    ∴△ABM≌△ACN(SAS),
    ∴∠B=∠ACN=60°,
    ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
    ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
    ∴CN∥AB;
    (2)∠ABC=∠ACN,理由如下:
    ∵=1且∠ABC=∠AMN,
    ∴△ABC~△AMN
    ∴,
    ∵AB=BC,
    ∴∠BAC=(180°﹣∠ABC),
    ∵AM=MN
    ∴∠MAN=(180°﹣∠AMN),
    ∵∠ABC=∠AMN,
    ∴∠BAC=∠MAN,
    ∴∠BAM=∠CAN,
    ∴△ABM~△ACN,
    ∴∠ABC=∠ACN;
    (3)如图3,连接AB,AN,
    ∵四边形ADBC,AMEF为正方形,
    ∴∠ABC=∠BAC=45°,∠MAN=45°,
    ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
    即∠BAM=∠CAN,
    ∵,
    ∴,
    ∴△ABM~△ACN
    ∴,
    ∴=cos45°=,
    ∴,
    ∴BM=2,
    ∴CM=BC﹣BM=8,
    在Rt△AMC,
    AM=,
    ∴EF=AM=2.

    【点睛】
    本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
    21、(1)150,(1)证明见解析(3)
    【解析】
    (1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;
    (1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;
    (3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.
    试题解析:
    【详解】
    解:(1)∵△ABP≌△ACP′,
    ∴AP=AP′,
    由旋转变换的性质可知,∠PAP′=60°,P′C=PB,
    ∴△PAP′为等边三角形,
    ∴∠APP′=60°,
    ∵∠PAC+∠PCA=×60° =30°,
    ∴∠APC=150°,
    ∴∠P′PC=90°,
    ∴PP′1+PC1=P′C1,
    ∴PA1+PC1=PB1,
    故答案为150,PA1+PC1=PB1;
    (1)如图,作°,使,连接,.过点A作AD⊥于D点.
    ∵°,
    即,
    ∴.
    ∵AB=AC,,
    ∴.

    ∴,°.
    ∵AD⊥,
    ∴°.
    ∴在Rt中,.
    ∴.
    ∵°,
    ∴°.
    ∴°.
    ∴在Rt中,.
    ∴;
    (3)如图1,与(1)的方法类似,
    作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,
    作AD⊥PP′于D,
    由旋转变换的性质可知,∠PAP′=α,P′C=PB,
    ∴∠APP′=90°-,
    ∵∠PAC+∠PCA=,
    ∴∠APC=180°-,
    ∴∠P′PC=(180°-)-(90°-)=90°,
    ∴PP′1+PC1=P′C1,
    ∵∠APP′=90°-,
    ∴PD=PA•cos(90°-)=PA•sin,
    ∴PP′=1PA•sin,
    ∴4PA1sin1+PC1=PB1,
    故答案为4PA1sin1+PC1=PB1.
    【点睛】
    本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.
    22、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
    (3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
    【解析】
    详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得

    解得:6≤a≤8,
    因为a是整数,
    所以a=6,7,8;
    则(10-a)=4,3,2;
    三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
    (3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    23、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱
    【解析】
    试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;
    (2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.
    试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:

    解得.
    答:篮球每个50元,排球每个30元.
    (2)设购买篮球m个,则购买排球(20-m)个,依题意,得:
    50m+30(20-m)≤1.
    解得:m≤2.
    又∵m≥8,∴8≤m≤2.
    ∵篮球的个数必须为整数,∴只能取8、9、2.
    ∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.
    以上三个方案中,方案①最省钱.
    点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.
    24、10
    【解析】
    【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.
    【详解】原式=1+9-+4
    =10-+
    =10.
    【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.

    相关试卷

    焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,下列说法中不正确的是,某班7名女生的体重等内容,欢迎下载使用。

    2022年陕西省铜川市达标名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年陕西省铜川市达标名校初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了若|a|=﹣a,则a为,某一公司共有51名员工等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map