


2022年山西省运城市夏县达标名校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.若=1,则符合条件的m有( )
A.1个 B.2个 C.3个 D.4个
2.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转( )
A.36° B.45° C.72° D.90°
3.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
A.0 B.1 C.2 D.3
4.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为( )
A.0.135×106 B.1.35×105 C.13.5×104 D.135×103
5.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是( )
A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣2
6.如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是( )
A. B. C. D.
7.一元二次方程x2+x﹣2=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
8.下列命题中真命题是( )
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
9.下列运算正确的是( )
A.a3•a2=a6 B.(a2)3=a5 C. =3 D.2+=2
10.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是( )
A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a
二、填空题(本大题共6个小题,每小题3分,共18分)
11.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
12.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____
13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.
14.二次函数中的自变量与函数值的部分对应值如下表:
…
…
…
…
则的解为________.
15.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.
16.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,ABAC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
18.(8分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.
(I)根据题意,填写下表:
月用水量(吨/户)
4
10
16
……
应收水费(元/户)
40
……
(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;
(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?
19.(8分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
20.(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
21.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:
(1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
22.(10分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.
(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为
(2)请把图2(条形统计图)补充完整;
(3)该校学生共600人,则参加棋类活动的人数约为 .
(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.
23.(12分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.
在平面直角坐标系xOy中,⊙O的半径为1.
(1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是 ;
(2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.
①∠MDN的大小为 ;
②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;
③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.
24.如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
【详解】
=1
m2-9=0或m-2= 1
即m= 3或m=3,m=1
m有3个值
故答案选C.
【点睛】
本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
2、C
【解析】
分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
故选C.
点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
3、D
【解析】
解:如图:
利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
故选:D.
4、B
【解析】
根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
【详解】
解:135000用科学记数法表示为:1.35×1.
故选B.
【点睛】
科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
分析:
由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
详解:
∵在中,﹣6<0,
∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
∵当x=﹣3时,y=2,当x=﹣2时,y=3,
∴当﹣3<x<﹣2时,2<y<3,
故选C.
点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
6、D
【解析】
∵AD//BC,DE//AB,∴四边形ABED是平行四边形,
∴ , ,
∴选项A、C错误,选项D正确,
选项B错误,
故选D.
7、A
【解析】
∵∆=12-4×1×(-2)=9>0,
∴方程有两个不相等的实数根.
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
8、B
【解析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
9、C
【解析】
结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.
【详解】
解:A. a3×a2=a5,原式计算错误,故本选项错误;
B. (a2)3=a6,原式计算错误,故本选项错误;
C. =3,原式计算正确,故本选项正确;
D. 2和不是同类项,不能合并,故本选项错误.
故选C.
【点睛】
本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则.
10、D
【解析】
根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.
【详解】
由数轴上的位置可得,a<0,-a>0, 0
故选D
【点睛】
本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
【点睛】
本题考查概率公式,掌握图形特点是解题关键,难度不大.
12、
【解析】
根据平行线分线段成比例定理解答即可.
【详解】
解:∵DE∥BC,AD=2BD,
∴,
∵EF∥AB,
∴,
故答案为.
【点睛】
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
13、.
【解析】
根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.
【详解】
连续左转后形成的正多边形边数为:,
则左转的角度是.
故答案是:.
【点睛】
本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.
14、或
【解析】
由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.
【详解】
解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),
∴此抛物线的对称轴为:直线x=-,
∵此抛物线过点(1,0),
∴此抛物线与x轴的另一个交点为:(-2,0),
∴ax2+bx+c=0的解为:x=-2或1.
故答案为x=-2或1.
【点睛】
此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.
15、y=x.(答案不唯一)
【解析】
首先设一次函数解析式为:y=kx+b(k≠0), b取任意值后,把(1,1)代入所设的解析式里,即可得到k的值,进而得到答案.
【详解】
解:设直线的解析式y=kx+b,令b=0,
将(1,1)代入,得k=1,
此时解析式为:y=x.
由于b可为任意值,故答案不唯一.
故答案为:y=x.(答案不唯一)
【点睛】
本题考查了待定系数法求一次函数解析式.
16、1
【解析】
根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.
【详解】
∵AB=AC,∠A=32°,
∴∠ABC=∠ACB=74°,
又∵BC=DC,
∴∠CDB=∠CBD=∠ACB=1°,
故答案为1.
【点睛】
本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2);(3)1.
【解析】
(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;
(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到,然后解关于r的方程即可;
(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1.
【详解】
解:(1)证明:连接OM,如图1,
∵BM是∠ABC的平分线,
∴∠OBM=∠CBM,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠CBM=∠OMB,
∴OM∥BC,
∵AB=AC,AE是∠BAC的平分线,
∴AE⊥BC,
∴OM⊥AE,
∴AE为⊙O的切线;
(2)解:设⊙O的半径为r,
∵AB=AC=6,AE是∠BAC的平分线,
∴BE=CE=BC=2,
∵OM∥BE,
∴△AOM∽△ABE,
∴,即,解得r=,
即设⊙O的半径为;
(3)解:作OH⊥BE于H,如图,
∵OM⊥EM,ME⊥BE,
∴四边形OHEM为矩形,
∴HE=OM=,
∴BH=BE﹣HE=2﹣=,
∵OH⊥BG,
∴BH=HG=,
∴BG=2BH=1.
18、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨
【解析】
(Ⅰ)根据题意计算即可;
(Ⅱ)根据分段函数解答即可;
(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.
【详解】
解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;
当月用水量为16吨时,应收水费=15×4+1×6=66元;
故答案为16;66;
(Ⅱ)当x≤15时,y=4x;
当x>15时,y=15×4+(x﹣15)×6=6x﹣30;
(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.
由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126
X=18,
∴居民甲上月用水量为18吨,居民乙用水12吨.
【点睛】
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.
19、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).
【解析】
分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;
(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.
(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
详解:(1)∵点A在正比例函数y=2x上,
∴把x=4代入正比例函数y=2x,
解得y=8,∴点A(4,8),
把点A(4,8)代入反比例函数y=,得k=32,
(2)∵点A与B关于原点对称,
∴B点坐标为(﹣4,﹣8),
由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;
(3)∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形APBQ是平行四边形,
∴S△POA=S平行四边形APBQ×=×224=1,
设点P的横坐标为m(m>0且m≠4),
得P(m,),
过点P、A分别做x轴的垂线,垂足为E、F,
∵点P、A在双曲线上,
∴S△POE=S△AOF=16,
若0<m<4,如图,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=1.
∴(8+)•(4﹣m)=1.
∴m1=﹣7+3,m2=﹣7﹣3(舍去),
∴P(﹣7+3,16+);
若m>4,如图,
∵S△AOF+S梯形AFEP=S△AOP+S△POE,
∴S梯形PEFA=S△POA=1.
∴×(8+)•(m﹣4)=1,
解得m1=7+3,m2=7﹣3(舍去),
∴P(7+3,﹣16+).
∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).
点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.
20、(1) A种钢笔每只15元 B种钢笔每只20元;
(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
(3) 定价为33元或34元,最大利润是728元.
【解析】
(1)设A种钢笔每只x元,B种钢笔每支y元,
由题意得 ,
解得: ,
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
由题意得:,
∴42.4≤z<45,
∵z是整数
z=43,44,
∴90-z=47,或46;
∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,
∵-4<0,∴W有最大值,∵a为正整数,
∴当a=3,或a=4时,W最大,
∴W最大==-4×(3-)²+729=728,30+a=33,或34;
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
21、(1)30;;(2).
【解析】
试题分析:(1)根据题意列式求值,根据相应数据画图即可;
(2)根据题意列表,然后根据表中数据求出概率即可.
解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
故答案为30,144°;
补全统计图如图所示:
(2)根据题意列表如下:
设竖列为小红抽取的跑道,横排为小花抽取的跑道,
记小红和小花抽在相邻两道这个事件为A,
∴.
考点:列表法与树状图法;扇形统计图;利用频率估计概率.
22、(1)7、30%;(2)补图见解析;(3)105人;(3)
【解析】
试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;
(2)根据(1)中所求数据即可补全条形图;
(3)总人数乘以棋类活动的百分比可得;
(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;
(2)补全条形图如下:
(3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;
(4)画树状图如下:
共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、(1)C;(2)①60;②E(,1);③点F的横坐标x的取值范围≤xF≤.
【解析】
(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;
(2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;
②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;
③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;
【详解】
(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,
故答案为C.
(2)①如图3-1中,作NH⊥x轴于H.
∵N(,-),
∴tan∠NOH=,
∴∠NOH=30°,
∠MON=90°+30°=120°,
∵点D是线段MN关于点O的关联点,
∴∠MDN+∠MON=180°,
∴∠MDN=60°.
故答案为60°.
②如图3-2中,结论:△MNE是等边三角形.
理由:作EK⊥x轴于K.
∵E(,1),
∴tan∠EOK=,
∴∠EOK=30°,
∴∠MOE=60°,
∵∠MON+∠MEN=180°,
∴M、O、N、E四点共圆,
∴∠MNE=∠MOE=60°,
∵∠MEN=60°,
∴∠MEN=∠MNE=∠NME=60°,
∴△MNE是等边三角形.
③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,
易知E(,1),
∴点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),
观察图象可知满足条件的点F的横坐标x的取值范围≤xF≤.
【点睛】
此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.
24、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).
【解析】
(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;
(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;
②分三种情况利用方程的思想即可得出结论;
B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;
②先判断出∠APC=90°,再分情况讨论计算即可.
【详解】
解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,
∴A(3,0),C(0,2),
∴OA=3,OC=2.
∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
∴四边形OABC是矩形,
∴AB=OC=2,BC=OA=3.
在Rt△ABC中,根据勾股定理得,AC==3.
故答案为2,3,3;
(1)选A.
①由(1)知,BC=3,AB=2,由折叠知,CD=AD.
在Rt△BCD中,BD=AB﹣AD=2﹣AD,
根据勾股定理得,CD1=BC1+BD1,
即:AD1=16+(2﹣AD)1,
∴AD=5;
②由①知,D(3,5),设P(0,y).
∵A(3,0),
∴AP1=16+y1,DP1=16+(y﹣5)1.
∵△APD为等腰三角形,
∴分三种情况讨论:
Ⅰ、AP=AD,
∴16+y1=15,
∴y=±3,
∴P(0,3)或(0,﹣3);
Ⅱ、AP=DP,
∴16+y1=16+(y﹣5)1,
∴y=,
∴P(0,);
Ⅲ、AD=DP,15=16+(y﹣5)1,
∴y=1或2,
∴P(0,1)或(0,2).
综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).
选B.①由A①知,AD=5,由折叠知,AE=AC=1,DE⊥AC于E.
在Rt△ADE中,DE==;
②∵以点A,P,C为顶点的三角形与△ABC全等,
∴△APC≌△ABC,或△CPA≌△ABC,
∴∠APC=∠ABC=90°.
∵四边形OABC是矩形,
∴△ACO≌△CAB,
此时,符合条件,点P和点O重合,即:P(0,0);
如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,
∴,
∴,
∴AN=,
过点N作NH⊥OA,
∴NH∥OA,
∴△ANH∽△ACO,
∴,
∴,
∴NH=,AH=,
∴OH=,
∴N(),
而点P1与点O关于AC对称,
∴P1(),
同理:点B关于AC的对称点P1,
同上的方法得,P1(﹣).
综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).
【点睛】
本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.
山西省运城市夏县达标名校2021-2022学年中考押题数学预测卷含解析: 这是一份山西省运城市夏县达标名校2021-2022学年中考押题数学预测卷含解析,共16页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
2022年天津市达标名校中考数学考前最后一卷含解析: 这是一份2022年天津市达标名校中考数学考前最后一卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2022年安微省达标名校中考数学考前最后一卷含解析: 这是一份2022年安微省达标名校中考数学考前最后一卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中,无理数是,方程的根是,运用图形变化的方法研究下列问题,我市某一周的最高气温统计如下表,计算的正确结果是等内容,欢迎下载使用。