2022年山东省德州市第九中学中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A.摸出的是3个白球 B.摸出的是3个黑球
C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球
2.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
3.若数a,b在数轴上的位置如图示,则( )
A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0
4.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )
A. B. C. D.
5.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是( )
A.①③ B.②③ C.③④ D.②④
6.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l
A.-5
7.利用运算律简便计算52×(–999)+49×(–999)+999正确的是
A.–999×(52+49)=–999×101=–100899
B.–999×(52+49–1)=–999×100=–99900
C.–999×(52+49+1)=–999×102=–101898
D.–999×(52+49–99)=–999×2=–1998
8.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
A.8 B.10 C.21 D.22
9.一元二次方程x2﹣3x+1=0的根的情况( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.以上答案都不对
10.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )
A. B. C. D.
11.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则
A.圆锥形冰淇淋纸套的底面半径为4cm
B.圆锥形冰淇淋纸套的底面半径为6cm
C.圆锥形冰淇淋纸套的高为
D.圆锥形冰淇淋纸套的高为
12.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5° B.15° C.20° D.22.5°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
14.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.
15.计算:2cos60°-+(5-π)°=____________.
16.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____.
17.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
18.不等式组的解集是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=.
(1)求反比例函数y=和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.
20.(6分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
21.(6分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
22.(8分)如图,已知,,.求证:.
23.(8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.
(1)求证:∠DCA=∠EBC;
(2)延长BE交AD于F,求证:AB2=AF·AD.
24.(10分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.
对雾霾了解程度的统计表
对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n
请结合统计图表,回答下列问题:统计表中:m= ,n= ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
25.(10分)计算:(-1)-1-++|1-3|
26.(12分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
27.(12分)如图,在平行四边形中,的平分线与边相交于点.
(1)求证;
(2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.
2、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
3、D
【解析】
首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案.
【详解】
由数轴可知:a<0<b,a<-1,0 所以,A.a+b<0,故原选项错误;
B. ab<0,故原选项错误;
C.a-b<0,故原选项错误;
D.,正确.
故选D.
【点睛】
本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系.
4、D
【解析】
试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.
5、D
【解析】
①错误.由题意a>1.b>1,c<1,abc<1;
②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
③错误.抛物线与x轴的另一个交点是(1,1);
④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
【详解】
解:∵抛物线开口向上,∴a>1,
∵抛物线交y轴于负半轴,∴c<1,
∵对称轴在y轴左边,∴- <1,
∴b>1,
∴abc<1,故①错误.
∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
当ax2+bx+c<mx+n时,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
抛物线与x轴的另一个交点是(1,1),故③错误,
∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
故选:D.
【点睛】
本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
6、B
【解析】
先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.
【详解】
∵ 抛物线y=-x2+mx的对称轴为直线x=2,
∴,
解之:m=4,
∴y=-x2+4x,
当x=2时,y=-4+8=4,
∴顶点坐标为(2,4),
∵ 关于x的-元二次方程-x2+mx-t=0 (t为实数)在l
当x=2时,y=-4+8=4,
∴ 3
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
7、B
【解析】
根据乘法分配律和有理数的混合运算法则可以解答本题.
【详解】
原式=-999×(52+49-1)=-999×100=-1.
故选B.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
8、D
【解析】
分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
故选D.
点睛:考查中位数的定义,看懂条形统计图是解题的关键.
9、B
【解析】
首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.
【详解】
∵a=1,b=-3,c=1,
∴△=(-3)2-4×1×1=5>0,
∴一元二次方程x2-3x+1=0两个不相等的实数根;
故选B.
【点睛】
此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.
10、B
【解析】
根据左视图的定义,从左侧会发现两个正方形摞在一起.
【详解】
从左边看上下各一个小正方形,如图
故选B.
11、C
【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.
【详解】
解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.
【点睛】
本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
圆锥的母线长等于侧面展开图的扇形半径;
圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.
12、B
【解析】
解:连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF=∠BOF=15°
故选:B
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、15
【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
详解:∵
当y=127时, 解得:x=43;
当y=43时,解得:x=15;
当y=15时, 解得 不符合条件.
则输入的最小正整数是15.
故答案为15.
点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
14、30
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.
考点:折叠图形的性质
15、1
【解析】
解:原式==1-2+1=1.故答案为1.
16、
【解析】
列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率.
根据题意,列出甲、乙、丙三个同学排成一排拍照的所有可能:
甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,
只有2种甲在中间,所以甲排在中间的概率是=.
故答案为;
点睛:本题主要考查了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比,关键是列举出同等可能的所有情况.
17、1
【解析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
【详解】
解:设利润为w元,
则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
∵10≤x≤20,
∴当x=1时,二次函数有最大值25,
故答案是:1.
【点睛】
本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
18、2<x≤1
【解析】
本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.
【详解】
由①得x>2,
由②得x≤1,
∴不等式组的解集为2<x≤1.
故答案为:2<x≤1.
【点睛】
此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1),(2)AC⊥CD(3)∠BMC=41°
【解析】
分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;
(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.
本题解析:
(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,
∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),
∴m=﹣2×3=﹣6,∴y=﹣,
设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),
∴,解得,∴y=x﹣2;
(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,
在△OAC和△BCD中
,∴△OAC≌△BCD(SAS),∴AC=CD,
∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
∴AC⊥CD;
(3)∠BMC=41°.
如图,连接AD,
∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,
∴四边形AEBD为平行四边形,
∴AD∥BM,∴∠BMC=∠DAC,
∵△OAC≌△BCD,∴AC=CD,
∵AC⊥CD,∴△ACD为等腰直角三角形,
∴∠BMC=∠DAC=41°.
20、证明见解析.
【解析】
由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.
【详解】
∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,
∴∠CAB=∠DAE,
在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,
∴△ABC≌△AED,
∴BC=ED.
21、 (1) 每次下调10% (2) 第一种方案更优惠.
【解析】
(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.
【详解】
解:(1)设平均每次下调的百分率为x,根据题意得
5000×(1-x)2=4050
解得x=10%或x=1.9(舍去)
答:平均每次下调10%.
(2)9.8折=98%,
100×4050×98%=396900(元)
100×4050-100×1.5×12×2=401400(元),
396900<401400,所以第一种方案更优惠.
答:第一种方案更优惠.
【点睛】
本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.
22、证明见解析.
【解析】
根据等式的基本性质可得,然后利用SAS即可证出,从而证出结论.
【详解】
证明:,
,
即,
在和中,
,
,
.
【点睛】
此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.
23、 (1)见解析;(2)见解析.
【解析】
(1)由AD∥BC得∠DAC=∠BCA, 又∵AC·CE=AD·BC∴,∴△ACD∽△CBE ,
∴∠DCA=∠EBC,
(2)由题中条件易证得△ABF∽△DAC∴,又∵AB=DC,∴
【详解】
证明:
(1)∵AD∥BC,
∴∠DAC=∠BCA,
∵AC·CE=AD·BC,
∴,
∴△ACD∽△CBE ,
∴∠DCA=∠EBC,
(2)∵AD∥BC,
∴∠AFB=∠EBC,
∵∠DCA=∠EBC,
∴∠AFB=∠DCA,
∵AD∥BC,AB=DC,
∴∠BAD=∠ADC,
∴△ABF∽△DAC,
∴,
∵AB=DC,
∴.
【点睛】
本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.
24、(1)20;15%;35%;(2)见解析;(3)126°.
【解析】
(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;
(2)求出D的学生人数,然后补全统计图即可;
(3)用D的百分比乘360°计算即可得解.
【详解】
解:(1)非常了解的人数为20,
60÷400×100%=15%,
1﹣5%﹣15%﹣45%=35%,
故答案为20;15%;35%;
(2)∵D等级的人数为:400×35%=140,
∴补全条形统计图如图所示:
(3)D部分扇形所对应的圆心角:360°×35%=126°.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
25、-1
【解析】
试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.
试题解析:原式=-1-=-1.
26、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
【详解】
(1)①如图1,
,
反比例函数为,
当时,,
,
当时,
,
,
,
设直线的解析式为,
,
,
直线的解析式为;
②四边形是菱形,
理由如下:如图2,
由①知,,
轴,
,
点是线段的中点,
,
当时,由得,,
由得,,
,,
,
,
四边形为平行四边形,
,
四边形是菱形;
(2)四边形能是正方形,
理由:当四边形是正方形,记,的交点为,
,
当时,,
,,
,
,,,
,
,
.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
27、(1)见解析;(2)菱形.
【解析】
(1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;
(2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.
【详解】
(1)∵DE平分∠ADC,
∴∠ADE=∠CDE.
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,AD=BC,AB=CD.
∵∠AED=∠CDE.
∴∠ADE=∠AED.
∴AD=AE.
∴BC=AE.
∵AB=AE+EB.
∴BE+BC=CD.
(2)菱形,理由如下:
由(1)可知,AD=AE,
∵点E与B重合,
∴AD=AB.
∵四边形ABCD是平行四边形
∴平行四边形ABCD为菱形.
【点睛】
本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.
2024年山东省东营实验中学中考数学四模试卷(含解析): 这是一份2024年山东省东营实验中学中考数学四模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省德州市德城区中考数学三模试卷(含解析): 这是一份2023年山东省德州市德城区中考数学三模试卷(含解析),共27页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年山东省德州市第七中学中考数学五模试卷含解析: 这是一份2022年山东省德州市第七中学中考数学五模试卷含解析,共18页。试卷主要包含了下列判断错误的是等内容,欢迎下载使用。