|试卷下载
搜索
    上传资料 赚现金
    2022年山东省德州市第七中学中考数学五模试卷含解析
    立即下载
    加入资料篮
    2022年山东省德州市第七中学中考数学五模试卷含解析01
    2022年山东省德州市第七中学中考数学五模试卷含解析02
    2022年山东省德州市第七中学中考数学五模试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省德州市第七中学中考数学五模试卷含解析

    展开
    这是一份2022年山东省德州市第七中学中考数学五模试卷含解析,共18页。试卷主要包含了下列判断错误的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.关于x的不等式组的所有整数解是(  )
    A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2
    2.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )

    A.80° B.90° C.100° D.102°
    3.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是(  )
    A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
    4.下列图形中,属于中心对称图形的是(  )
    A. B.
    C. D.
    5.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )

    A. B.
    C. D.
    6.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )

    A. B. C. D.
    7.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为(  )

    A. B.2 C.3 D.1.5
    8.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为(  )
    A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010
    9.下列判断错误的是( )
    A.对角线相等的四边形是矩形
    B.对角线相互垂直平分的四边形是菱形
    C.对角线相互垂直且相等的平行四边形是正方形
    D.对角线相互平分的四边形是平行四边形
    10.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算(2a)3的结果等于__.
    12.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .

    13.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .

    14.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.

    15.分解因式2x2+4x+2=__________.
    16.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个) 

    17.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.
    求证:DE是⊙O的切线;若DE=3,CE=2. ①求的值;②若点G为AE上一点,求OG+EG最小值.
    19.(5分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.

    (1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
    i)求证:△CAE∽△CBF;
    ii)若BE=1,AE=2,求CE的长;
    (2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
    (3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
    20.(8分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
    21.(10分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
    22.(10分)某企业信息部进行市场调研发现:
    信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
    x(万元)
    1
    2
    2.5
    3
    5
    yA(万元)
    0.4
    0.8
    1
    1.2
    2
    信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
    (1)求出yB与x的函数关系式;
    (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
    (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
    23.(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图. 
    (1)参加音乐类活动的学生人数为   人,参加球类活动的人数的百分比为 
    (2)请把图2(条形统计图)补充完整; 
    (3)该校学生共600人,则参加棋类活动的人数约为 . 
     (4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率. 

    24.(14分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
    (1)初三•二班跑得最快的是第   接力棒的运动员;
    (2)发令后经过多长时间两班运动员第一次并列?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.
    【详解】
    解不等式﹣2x<4,得:x>﹣2,
    解不等式3x﹣5<1,得:x<2,
    则不等式组的解集为﹣2<x<2,
    所以不等式组的整数解为﹣1、0、1,
    故选:B.
    【点睛】
    考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    2、A
    【解析】
    分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
    详解:∵AB∥CD.
    ∴∠A=∠3=40°,
    ∵∠1=60°,
    ∴∠2=180°∠1−∠A=80°,
    故选:A.
    点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
    3、D
    【解析】
    根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
    【详解】
    A、数据中5出现2次,所以众数为5,此选项正确;
    B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
    C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
    D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
    故选:D.
    【点睛】
    本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
    4、B
    【解析】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    【详解】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
    C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    故选B.
    【点睛】
    本题考查了轴对称与中心对称图形的概念:
    中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【解析】
    根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
    【详解】
    解:∵DE∥BC,
    ∴=,BD≠BC,
    ∴≠,选项A不正确;
    ∵DE∥BC,EF∥AB,
    ∴=,EF=BD,=,
    ∵≠,
    ∴≠,选项B不正确;
    ∵EF∥AB,
    ∴=,选项C正确;
    ∵DE∥BC,EF∥AB,
    ∴=,=,CE≠AE,
    ∴≠,选项D不正确;
    故选C.
    【点睛】
    本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
    6、B
    【解析】
    观察图形,利用中心对称图形的性质解答即可.
    【详解】
    选项A,新图形不是中心对称图形,故此选项错误;
    选项B,新图形是中心对称图形,故此选项正确;
    选项C,新图形不是中心对称图形,故此选项错误;
    选项D,新图形不是中心对称图形,故此选项错误;
    故选B.
    【点睛】
    本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.
    7、A
    【解析】
    分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×,即可推出BC=2BH=,
    详解:作OH⊥BC于H.

    ∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,
    ∴∠BOC=120°,
    ∵OH⊥BC,OB=OC,
    ∴BH=HC,∠BOH=∠HOC=60°,
    在Rt△BOH中,BH=OB•sin60°=1×=,
    ∴BC=2BH=.
    故选A.
    点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.
    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:1800000000=1.8×109,
    故选:C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、A
    【解析】
    利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
    【详解】
    解:、对角线相等的四边形是矩形,错误;
    、对角线相互垂直平分的四边形是菱形,正确;
    、对角线相互垂直且相等的平行四边形是正方形,正确;
    、对角线相互平分的四边形是平行四边形,正确;
    故选:.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
    10、A
    【解析】
    分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.
    详解:A、上面小下面大,侧面是曲面,故本选项正确;
    B、上面大下面小,侧面是曲面,故本选项错误;
    C、是一个圆台,故本选项错误;
    D、下面小上面大侧面是曲面,故本选项错误;
    故选A.
    点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.

    二、填空题(共7小题,每小题3分,满分21分)
    11、8
    【解析】
    试题分析:根据幂的乘方与积的乘方运算法则进行计算即可
    考点:(1)、幂的乘方;(2)、积的乘方
    12、.
    【解析】
    试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.

    考点:扇形的面积计算.
    13、.
    【解析】
    试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,∴这个点取在阴影部分的概率为:6÷=6÷18=.
    考点:求随机事件的概率.
    14、120°
    【解析】
    根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.
    【详解】
    解:∵三种品牌的粽子总数为1200÷50%=2400个,
    又∵A、C品牌的粽子分别有400个、1200个,
    ∴B品牌的粽子有2400-400-1200=800个,
    则B品牌粽子在图2中所对应的圆心角的度数为360×.
    故答案为120°.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    15、2(x+1)2。
    【解析】
    试题解析:原式=2(x2+2x+1)=2(x+1)2.
    考点:提公因式法与公式法的综合运用.
    16、或
    【解析】
    因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.
    【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.
    17、(a+b)2﹣(a﹣b)2=4ab
    【解析】
    根据长方形面积公式列①式,根据面积差列②式,得出结论.
    【详解】
    S阴影=4S长方形=4ab①,
    S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,
    由①②得:(a+b)2﹣(a﹣b)2=4ab.
    故答案为(a+b)2﹣(a﹣b)2=4ab.
    【点睛】
    本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析(2)① ②3
    【解析】
    (1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;
    (2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;
    ②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.
    【详解】
    (1)连接OE

    ∵OA=OE,∴∠AEO=∠EAO
    ∵∠FAE=∠EAO,∴∠FAE=∠AEO
    ∴OE∥AF
    ∵DE⊥AF,∴OE⊥DE
    ∴DE是⊙O的切线
    (2)①解:连接BE
    ∵直径AB ∴∠AEB=90°
    ∵圆O与BC相切
    ∴∠ABC=90°
    ∵∠EAB+∠EBA=∠EBA+∠CBE=90°
    ∴∠EAB=∠CBE
    ∴∠DAE=∠CBE
    ∵∠ADE=∠BEC=90°
    ∴△ADE∽△BEC

    ②连接OF,交AE于G,
    由①,设BC=2x,则AE=3x
    ∵△BEC∽△ABC ∴

    解得:x1=2,(不合题意,舍去)
    ∴AE=3x=6,BC=2x=4,AC=AE+CE=8
    ∴AB=,∠BAC=30°
    ∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°
    ∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形
    由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.
    故OG+EG最小值是3.
    【点睛】
    本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.
    19、(1)i)证明见试题解析;ii);(2);(3).
    【解析】
    (1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;
    ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有,解得;
    (2)连接BF,同理可得:∠EBF=1°,由,得到,,故,从而,得到,代入解方程即可;
    (3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
    ,,
    故,
    从而有.
    【详解】
    解:(1)i)∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;
    ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;
    (2)连接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;
    (3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
    ,,
    ∴,
    ∴.

    【点睛】
    本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质.
    20、-4
    【解析】
    分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.
    详解:原式=-4+1-2×+-1=-4
    点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.
    21、(1)P(抽到数字为2)=;(2)不公平,理由见解析.
    【解析】
    试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.
    试题解析: (1)P=;
    (2)由题意画出树状图如下:

    一共有6种情况,
    甲获胜的情况有4种,P=,
    乙获胜的情况有2种,P=,
    所以,这样的游戏规则对甲乙双方不公平.
    考点:游戏公平性;列表法与树状图法.
    22、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
    【解析】
    (1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
    (2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
    (3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
    【详解】
    解:(1)yB=-0.2x2+1.6x,
    (2)一次函数,yA=0.4x,
    (3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
    ∴当x=3时,W最大值=7.8,
    答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
    23、(1)7、30%;(2)补图见解析;(3)105人;(3) 
    【解析】
    试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;
    (2)根据(1)中所求数据即可补全条形图;
    (3)总人数乘以棋类活动的百分比可得;
    (4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
    试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;
    (2)补全条形图如下:

    (3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;
    (4)画树状图如下:

    共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.
    【解析】
    (1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.
    【详解】
    (1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:

    解得:k=,b=﹣,
    即y1=x﹣,
    二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:

    解得:k′=,b′=,
    即y2=x+
    联立方程组,
    解得:,
    所以发令后第37秒两班运动员在275米处第一次并列.
    【点睛】
    本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.

    相关试卷

    2023年山东省德州市宁津县中考数学二模试卷(含解析): 这是一份2023年山东省德州市宁津县中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年山东省德州市夏津县中考数学一模试卷(含解析): 这是一份2023年山东省德州市夏津县中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年山东省德州市第九中学中考数学四模试卷含解析: 这是一份2022年山东省德州市第九中学中考数学四模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map