|试卷下载
搜索
    上传资料 赚现金
    2022年山东省青岛市集团校联考中考五模数学试题含解析
    立即下载
    加入资料篮
    2022年山东省青岛市集团校联考中考五模数学试题含解析01
    2022年山东省青岛市集团校联考中考五模数学试题含解析02
    2022年山东省青岛市集团校联考中考五模数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省青岛市集团校联考中考五模数学试题含解析

    展开
    这是一份2022年山东省青岛市集团校联考中考五模数学试题含解析,共21页。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图所示的几何体的主视图是( )

    A. B. C. D.
    2.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是(  )

    A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
    3.分式有意义,则x的取值范围是(  )
    A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7
    4.下列计算结果是x5的为(  )
    A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
    5.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是(  )
    A.两点之间的所有连线中,线段最短
    B.经过两点有一条直线,并且只有一条直线
    C.直线外一点与直线上各点连接的所有线段中,垂线段最短
    D.经过一点有且只有一条直线与已知直线垂直
    6.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则△ABD的面积是(  )

    A.18 B.36 C.54 D.72
    7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=(  )

    A. B. C. D.
    8.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )

    A.AB=AD B.AC平分∠BCD
    C.AB=BD D.△BEC≌△DEC
    9.已知x﹣2y=3,那么代数式3﹣2x+4y的值是( )
    A.﹣3 B.0 C.6 D.9
    10.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为(  )
    A.0.86×104 B.8.6×102 C.8.6×103 D.86×102
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.方程=1的解是_____.
    12.化简:=_____.
    13.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)

    14.把多项式x3﹣25x分解因式的结果是_____
    15.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.

    16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 .

    三、解答题(共8题,共72分)
    17.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?

    18.(8分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
    19.(8分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
    (1)本次调查了   名学生,扇形统计图中“1部”所在扇形的圆心角为   度,并补全条形统计图;
    (2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;
    (3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.

    20.(8分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
    (1)求证:△ACM∽△ABE.
    (2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
    (3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.

    21.(8分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
    销售时段
    销售数量
    销售收入
    种型号
    种型号
    第一周
    3台
    4台
    1200元
    第二周
    5台
    6台
    1900元
    (进价、售价均保持不变,利润=销售收入—进货成本)
    (1)求、两种型号的电器的销售单价;
    (2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
    (3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
    22.(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
    23.(12分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
    证明:∽;
    若,求的值;
    如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.

    24.如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    主视图就是从正面看,看列数和每一列的个数.
    【详解】
    解:由图可知,主视图如下

    故选C.
    【点睛】
    考核知识点:组合体的三视图.
    2、D
    【解析】
    由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
    【详解】
    解:∵△OAB绕O点逆时针旋转60°得到△OCD,
    ∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
    则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
    ∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
    故选D.
    【点睛】
    本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
    3、A
    【解析】
    直接利用分式有意义则分母不为零进而得出答案.
    【详解】
    解:分式有意义,
    则x﹣1≠0,
    解得:x≠1.
    故选:A.
    【点睛】
    此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
    4、C
    【解析】解:A.x10÷x2=x8,不符合题意;
    B.x6﹣x不能进一步计算,不符合题意;
    C.x2x3=x5,符合题意;
    D.(x3)2=x6,不符合题意.
    故选C.
    5、B
    【解析】
    本题要根据过平面上的两点有且只有一条直线的性质解答.
    【详解】
    根据两点确定一条直线.
    故选:B.
    【点睛】
    本题考查了“两点确定一条直线”的公理,难度适中.
    6、B
    【解析】
    根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DH,再由三角形的面积公式可得出结论.
    【详解】
    由题意可知AP为∠CAB的平分线,过点D作DH⊥AB于点H,

    ∵∠C=90°,CD=1,
    ∴CD=DH=1.
    ∵AB=18,
    ∴S△ABD=AB•DH=×18×1=36
    故选B.
    【点睛】
    本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
    7、C
    【解析】
    根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.
    【详解】

    ∵D(0,3),C(4,0),
    ∴OD=3,OC=4,
    ∵∠COD=90°,
    ∴CD= =5,
    连接CD,如图所示:
    ∵∠OBD=∠OCD,
    ∴cos∠OBD=cos∠OCD= .
    故选:C.
    【点睛】
    本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.
    8、C
    【解析】
    解:∵AC垂直平分BD,∴AB=AD,BC=CD,
    ∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
    在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
    ∴Rt△BCE≌Rt△DCE(HL).
    ∴选项ABD都一定成立.
    故选C.
    9、A
    【解析】
    解:∵x﹣2y=3,
    ∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;
    故选A.
    10、C
    【解析】
    科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
    【详解】
    数据8 600用科学记数法表示为8.6×103
    故选C.
    【点睛】
    用科学记数法表示一个数的方法是
    (1)确定a:a是只有一位整数的数;
    (2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x=3
    【解析】
    去分母得:x﹣1=2,
    解得:x=3,
    经检验x=3是分式方程的解,
    故答案为3.
    【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.
    12、-6
    【解析】
    根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
    【详解】
    ,
    故答案为-6
    13、②③④
    【解析】
    试题解析:根据已知条件不能推出OA=OD,∴①错误;
    ∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
    ∴DE=DF,∠AED=∠AFD=90°,
    在Rt△AED和Rt△AFD中,

    ∴Rt△AED≌Rt△AFD(HL),
    ∴AE=AF,
    ∵AD平分∠BAC,
    ∴AD⊥EF,∴②正确;
    ∵∠BAC=90°,∠AED=∠AFD=90°,
    ∴四边形AEDF是矩形,
    ∵AE=AF,
    ∴四边形AEDF是正方形,∴③正确;
    ∵AE=AF,DE=DF,
    ∴AE2+DF2=AF2+DE2,∴④正确;
    ∴②③④正确,
    14、x(x+5)(x﹣5).
    【解析】
    分析:首先提取公因式x,再利用平方差公式分解因式即可.
    详解:x3-25x
    =x(x2-25)
    =x(x+5)(x-5).
    故答案为x(x+5)(x-5).
    点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    15、x+x=75.
    【解析】
    试题解析:设长方形墙砖的长为x厘米,
    可得:x+x=75.
    16、1.
    【解析】
    试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.

    考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.

    三、解答题(共8题,共72分)
    17、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【解析】
    【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
    (2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
    【详解】(1)设该一次函数解析式为y=kx+b,
    将(150,45)、(0,1)代入y=kx+b中,得
    ,解得:,
    ∴该一次函数解析式为y=﹣x+1;
    (2)当y=﹣x+1=8时,
    解得x=520,
    即行驶520千米时,油箱中的剩余油量为8升.
    530﹣520=10千米,
    油箱中的剩余油量为8升时,距离加油站10千米,
    ∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
    18、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
    19、(1)40、126(2)240人(3)
    【解析】
    (1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;
    (2)用1600乘以4部所占的百分比即可;
    (3)根据树状图所得的结果,判断他们选中同一名著的概率.
    【详解】
    (1)调查的总人数为:10÷25%=40,
    ∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,
    则扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;

    故答案为40、126;
    (2)预估其中4部都读完了的学生有1600×=240人;
    (3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
    画树状图可得:

    共有16种等可能的结果,其中选中同一名著的有4种,
    故P(两人选中同一名著)==.
    【点睛】
    本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
    20、(1)证明见解析;(2)证明见解析;(3)74.
    【解析】
    (1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
    (2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
    (3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
    【详解】
    (1)证明:∵四边形ABCD和四边形AEMN都是正方形,
    ∴,∠CAB=∠MAC=45°,
    ∴∠CAB-∠CAE=∠MAC-∠CAE,
    ∴∠BAE=∠CAM,
    ∴△ACM∽△ABE.

    (2)证明:连结AC
    因为△ACM∽△ABE,则∠ACM=∠B=90°,
    因为∠ACB=∠ECF=45°,
    所以∠ACM+∠ACB+∠ECF=180°,
    所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
    所以BD平行MF,
    又因为MC=BE,FC=CE,
    所以MF=BC=BD,
    所以四边形BFMD是平行四边形

    (3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
    =62+42+(2+6)4+ 26
    =74.
    【点睛】
    本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
    21、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.
    【解析】
    (1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;
    (2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;
    (3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.
    【详解】
    解:(1)设A型电器销售单价为x元,B型电器销售单价y元,
    则 ,
    解得:,
    答:A型电器销售单价为200元,B型电器销售单价150元;
    (2)设A型电器采购a台,
    则160a+120(50−a)≤7500,
    解得:a≤,
    则最多能采购37台;
    (3)设A型电器采购a台,
    依题意,得:(200−160)a+(150−120)(50−a)>1850,
    解得:a>35,
    则35<a≤,
    ∵a是正整数,
    ∴a=36或37,
    方案一:采购A型36台B型14台;
    方案二:采购A型37台B型13台.
    【点睛】
    本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
    22、(1);(2).
    【解析】
    (1)直接根据概率公式求解;
    (2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
    【详解】
    (1)正数为2,所以该球上标记的数字为正数的概率为;
    (2)画树状图为:

    共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    23、(1)证明见解析;(2);(3).
    【解析】
    由余角的性质可得,即可证∽;
    由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
    由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
    【详解】
    证明:,

    又,


    又,

    ∽,

    又,,


    如图,延长AD与BG的延长线交于H点




    ,由可知≌


    代入上式可得,
    ∽,
    ,,

    ,,
    平分
    又平分,

    是等腰直角三角形.
    ∴.
    【点睛】
    本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
    24、(1),N(3,6);(2)y=-x+2,S△OMN=3.
    【解析】
    (1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
    (2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
    【详解】
    解:(1)∵点M是AB边的中点,∴M(6,3).
    ∵反比例函数y=经过点M,∴3=.∴k=1.
    ∴反比例函数的解析式为y=.
    当y=6时,x=3,∴N(3,6).
    (2)由题意,知M(6,2),N(2,6).
    设直线MN的解析式为y=ax+b,则

    解得,
    ∴直线MN的解析式为y=-x+2.
    ∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
    【点睛】
    本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.

    相关试卷

    2023-2024学年山东省青岛市集团校联考数学九年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年山东省青岛市集团校联考数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了下列四个数中是负数的是,已知抛物线的顶点坐标为,若两个相似三角形的面积之比为1等内容,欢迎下载使用。

    山东省青岛市集团校联考2023-2024学年八上数学期末达标检测试题含答案: 这是一份山东省青岛市集团校联考2023-2024学年八上数学期末达标检测试题含答案,共7页。试卷主要包含了若三边长,,,满足,则是,计算-3+4的结果是,点P象限等内容,欢迎下载使用。

    山东省青岛市集团校联考2022-2023学年数学七下期末统考试题含答案: 这是一份山东省青岛市集团校联考2022-2023学年数学七下期末统考试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,用反证法证明,某商务酒店客房有间供客户居住,已知正比例函数y=kx等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map