2022届山东省青岛市集团校中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )
A. B. C. D.
2.下列计算正确的是( )
A.x4•x4=x16 B.(a+b)2=a2+b2
C.=±4 D.(a6)2÷(a4)3=1
3.下列计算错误的是( )
A.a•a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a4
4.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为( )
A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<4
5.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
A. B. C. D.
6.的倒数是( )
A.﹣ B.2 C.﹣2 D.
7.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
8.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
A.2:3 B.3:2 C.4:9 D.9:4
9.下列图标中,是中心对称图形的是( )
A. B.
C. D.
10.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.
12.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程 .
13.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.
14.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 .
15.观察以下一列数:3,,,,,…则第20个数是_____.
16.已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.
三、解答题(共8题,共72分)
17.(8分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)
18.(8分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.
19.(8分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)根据图象写出不等式kx+b﹣≤0的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
20.(8分)某经销商从市场得知如下信息:
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
21.(8分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
22.(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:
(1)求两人相遇时小明离家的距离;
(2)求小丽离距离图书馆500m时所用的时间.
23.(12分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.
(1)若a+e=0,则代数式b+c+d= ;
(2)若a是最小的正整数,先化简,再求值:;
(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是 .
24.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.
已知:如图,线段a,h.
求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;
【详解】
解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,
故选A.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
2、D
【解析】
试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
考点:1、幂的运算;2、完全平方公式;3、算术平方根.
3、C
【解析】
解:A、a•a=a2,正确,不合题意;
B、2a+a=3a,正确,不合题意;
C、(a3)2=a6,故此选项错误,符合题意;
D、a3÷a﹣1=a4,正确,不合题意;
故选C.
【点睛】
本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.
4、C
【解析】
先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
【详解】
解:∵一个正方形花坛的面积为,其边长为,
则a的取值范围为:.
故选:C.
【点睛】
此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
5、D
【解析】
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
∴OD=AE=5,
,
∴正方形的面积是: ,故选D.
6、B
【解析】
根据乘积是1的两个数叫做互为倒数解答.
【详解】
解:∵×1=1
∴的倒数是1.
故选B.
【点睛】
本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
7、D
【解析】
先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
【详解】
解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
8、C
【解析】
由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
【详解】
∵△ABC与△DEF相似,相似比为2:3,
∴这两个三角形的面积比为4:1.
故选C.
【点睛】
此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
9、B
【解析】
根据中心对称图形的概念 对各选项分析判断即可得解.
【详解】
解:A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
【点睛】
本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
故选:C.
【点睛】
掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、或.
【解析】
①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题
②同①的解题思路一样
【详解】
解:分两种情况:
①如图1所示:
设AD=x,延长A'D交AB于H,则A'H⊥AB,
∴∠AHD=∠C=90°,
由勾股定理得:AB==13,
∵∠A=∠A,
∴△ADH∽△ABC,
∴,即,
解得:DH=x,AH=x,
∵E是AB的中点,
∴AE=AB=,
∴HE=AE﹣AH=﹣x,
由折叠的性质得:A'D=AD=x,A'E=AE=,
∴sin∠A=sin∠A'= ,
解得:x= ;
②如图2所示:设AD=A'D=x,
∵A'D⊥AB,
∴∠A'HE=90°,
同①得:A'E=AE=,DH=x,
∴A'H=A'D﹣DH=x﹣=x,
∴cos∠A=cos∠A'= ,
解得:x= ;
综上所述,AD的长为 或.
故答案为 或.
【点睛】
此题考查了勾股定理,三角形相似,关键在于做辅助线
12、.
【解析】
试题解析:∵原计划用的时间为:
实际用的时间为:
∴可列方程为:
故答案为
13、1.267×102
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.
【详解】
解:126 700=1.267×102.
故答案为1.267×102.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
14、1
【解析】
考点:圆锥的计算.
分析:求得扇形的弧长,除以1π即为圆锥的底面半径.
解:扇形的弧长为:=4π;
这个圆锥的底面半径为:4π÷1π=1.
点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
15、
【解析】
观察已知数列得到一般性规律,写出第20个数即可.
【详解】
解:观察数列得:第n个数为,则第20个数是.
故答案为.
【点睛】
本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.
16、y1>y1
【解析】分析:直接利用一次函数的性质分析得出答案.
详解:∵直线经过第一、二、四象限,
∴y随x的增大而减小,
∵x1<x1,
∴y1与y1的大小关系为:y1>y1.
故答案为:>.
点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.
三、解答题(共8题,共72分)
17、公路的宽为20.5米.
【解析】
作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.
【详解】
解:如图,过点C作CD⊥AE于点D,
设公路的宽CD=x米,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,∵∠CAE=30°,
∴tan∠CAD==,即=,
解得:x=≈20.5(米),
答:公路的宽为20.5米.
【点睛】
本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.
18、(1)证明见解析;(2).
【解析】
(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;
(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.
解:(1)∵AB=AC,∴∠B=∠C.
∵∠APD=∠B,∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∴AB•CD=CP•BP.
∵AB=AC,
∴AC•CD=CP•BP;
(2)∵PD∥AB,∴∠APD=∠BAP.
∵∠APD=∠C,∴∠BAP=∠C.
∵∠B=∠B,
∴△BAP∽△BCA,
∴.
∵AB=10,BC=12,
∴,
∴BP=.
“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
19、 (1) y=﹣x+6;(2) 0<x<2或x>4;(3) 点P的坐标为(2,0)或(﹣3,0).
【解析】
(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;
(2)根据点坐标和图象即可得出结论;
(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.
【详解】
解:(1)∵点和点在反比例函数的图象上,
,
解得,
即
把两点代入中得 ,
解得:,
所以直线的解析式为:;
(2)由图象可得,当时,的解集为或.
(3)由(1)得直线的解析式为,
当时,y=6,
,
,
当时,,
∴点坐标为
.
设P点坐标为,由题可以,点在点左侧,则
由可得
①当时,,
,解得,
故点P坐标为
②当时,,
,解得,
即点P的坐标为
因此,点P的坐标为或时,与相似.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.
20、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
【点睛】
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
21、15cm
【解析】
试题分析:设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.
试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四边形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
22、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
【解析】
(1)根据题意得出小明的速度,进而得出得出小明离家的距离;
(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
【详解】
解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
300×5=1500(米),
∴两人相遇时小明离家的距离为1500米;
(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
1500+120(x﹣10)=4500﹣500,
解得x=.
答:小丽离距离图书馆500m时所用的时间为分.
【点睛】
本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
23、 (1)0;(1) ,;(3) ﹣1<x<1.
【解析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;
(1)根据题意可得:a=1,将分式计算并代入可得结论即可;
(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.
【详解】
解:(1)∵a+e=0,即a、e互为相反数,
∴点C表示原点,
∴b、d也互为相反数,
则a+b+c+d+e=0,
故答案为:0;
(1)∵a是最小的正整数,
∴a=1,
则原式=÷[+]
=÷
=•
=,
当a=1时,
原式==;
(3)∵A、B、C、D、E为连续整数,
∴b=a+1,c=a+1,d=a+3,e=a+4,
∵a+b+c+d=1,
∴a+a+1+a+1+a+3=1,
4a=﹣4,
a=﹣1,
∵MA+MD=3,
∴点M再A、D两点之间,
∴﹣1<x<1,
故答案为:﹣1<x<1.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.
24、见解析
【解析】
作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出△ABC.
【详解】
解:如图所示,△ABC即为所求.
【点睛】
考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.
山东省青岛市局属四校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份山东省青岛市局属四校2021-2022学年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
山东省青岛市集团校联考2022年中考试题猜想数学试卷含解析: 这是一份山东省青岛市集团校联考2022年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,下列计算正确的是等内容,欢迎下载使用。
山东省滨州市集团校2021-2022学年中考数学四模试卷含解析: 这是一份山东省滨州市集团校2021-2022学年中考数学四模试卷含解析,共24页。试卷主要包含了下列说法中,正确的个数共有,函数的图象上有两点,,若,则等内容,欢迎下载使用。