![浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升)01](http://img-preview.51jiaoxi.com/2/3/13408292/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升)02](http://img-preview.51jiaoxi.com/2/3/13408292/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升)03](http://img-preview.51jiaoxi.com/2/3/13408292/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升)
展开浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升)
1. (2022·浙江温州)如图,是的角平分线,,交于点E.
(1)求证:.
(2)当时,请判断与的大小关系,并说明理由.
2. (2022·浙江温州)已知反比例函数的图象的一支如图所示,它经过点.
(1)求这个反比例函数的表达式,并补画该函数图象的另一支.
(2)求当,且时自变量x的取值范围.
3. (2022·浙江温州)如图,在中,于点D,E,F分别是的中点,O是的中点,的延长线交线段于点G,连结,,.
(1)求证:四边形是平行四边形.
(2)当,时,求的长.
4. (2022·浙江温州)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽,拱顶离水面.据调查,该河段水位在此基础上再涨达到最高.
素材2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决
任务1
确定桥拱形状
在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2
探究悬挂范围
在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3
拟定设计方案
给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
5. (2022·浙江温州)如图1,为半圆O的直径,C为延长线上一点,切半圆于点D,,交延长线于点E,交半圆于点F,已知.点P,Q分别在线段上(不与端点重合),且满足.设.
(1)求半圆O的半径.
(2)求y关于x的函数表达式.
(3)如图2,过点P作于点R,连结.
①当为直角三角形时,求x的值.
②作点F关于的对称点,当点落在上时,求的值.
6. (2022·浙江嘉兴)(1)计算:
(2)解方程:.
7. (2022·浙江嘉兴)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.
小惠:
证明:∵AC⊥BD,OB=OD,
∴AC垂直平分BD.
∴AB=AD,CB=CD,
∴四边形ABCD是菱形.
小洁:
这个题目还缺少条件,需要补充一个条件才能证明.
若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.
8. (2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
(1)尝试:
①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225= ;
……
(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
(3)运用:若与100a的差为2525,求a的值.
9. (2022·浙江嘉兴)6月13日,某港口的潮水高度y()和时间x(h)的部分数据及函数图像如下:
x(h)
…
11
12
13
14
15
16
17
18
…
y()
…
189
137
103
80
101
133
202
260
…
(数据来自某海洋研究所)
(1)数学活动:
①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图像.
②观察函数图像,当时,y的值为多少?当y的值最大时,x的值为多少?
(2)数学思考:
请结合函数图像,写出该函数的两条性质或结论.
(3)数学应用:
根据研究,当潮水高度超过260时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?
10. (2022·浙江嘉兴)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知,,,,.(结果精确到0.1,参考数据:,,,,,)
(1)连结,求线段的长.
(2)求点A,B之间的距离.
11. (2022·浙江嘉兴)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:
中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:
(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?
(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?
(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.
12. (2022·浙江嘉兴)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
13. (2022·浙江嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.
(1)你赞同他的作法吗?请说明理由.
(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造DPE,使得DPE∽CPB.
①如图3,当点D运动到点A时,求∠CPE的度数.
②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.
14. (2022·浙江湖州)计算:.
15. (2022·浙江湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sinA的值.
16. (2022·浙江湖州)解一元一次不等式组
17. (2022·浙江湖州)为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整).
根据统计图中的信息,解答下列问题:
(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;
(2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.
18. (2022·浙江湖州)如图,已知在Rt△ABC中,,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作,垂足为F.
(1)求证:;
(2)若,,求AD的长.
19. (2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.
(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?
(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;
(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.
20. (2022·浙江湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D.
(1)①求点A,B,C的坐标;
②求b,c的值.
(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
21. (2022·浙江湖州)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,.记△ABC的面积为S.
(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为,正方形BGFC的面积为.
①若,,求S的值;
②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:.
(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为,等边三角形CBE的面积为.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索与S之间的等量关系,并说明理由.
22. (2022·浙江绍兴)计算
(1)计算:6tan30°+(+1)0-.
(2)解方程组
23. (2022·浙江绍兴)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.
八年级学生每日完成书面作业所需时长情况的统计表
组别
所需时长(小时)
学生人数(人)
A
15
B
m
C
n
D
5
(1)求统计表中m,n的值.
(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足的共有多少人.
24. (2022·浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).
x
0
0.5
1
1.5
2
y
1
1.5
2
2.5
3
为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:(),y=ax2+bx+c (),().
(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图像.
(2)当水位高度达到5米时,求进水用时x.
25. (2022·浙江绍兴)圭表(如图是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” 和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ,当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表垂直圭,已知该市冬至正午太阳高度角(即为,夏至正午太阳高度角(即为,圭面上冬至线与夏至线之间的距离(即的长)为4米.
(1)求∠BAD的度数.
(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)
26. (2022·浙江绍兴)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连接OD,AD.
(1)若∠ACB=20°,求的长(结果保留).
(2)求证:AD平分∠BDO.
参考答案:
1. (1)见解析
(2)相等,见解析
【解析】
【分析】
(1)利用角平分线的定义和平行线的性质可得结论;
(2)利用平行线的性质可得, 则AD= AE,从而有CD = BE,由(1) 得,,可知BE = DE,等量代换即可.
(1)
证明:∵是的角平分线,
∴.
∵,
∴,
∴.
(2)
.理由如下:
∵,
∴.
∵,
∴,
∴,
∴,
∴,即.
由(1)得,
∴,
∴.
【点睛】
本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键.
2. (1),见解析
(2)或
【解析】
【分析】
(1)将图中给出的点代入反比例函数表达式,即可求出解析式,并画出图象;
(2)当时,,解得,结合图象即可得出x的取值范围.
(1)
解:(1)把点代入表达式,
得,
∴,
∴反比例函数的表达式是.
反比例函数图象的另一支如图所示.
(2)
当时,,解得.
由图象可知,当,且时,
自变量x的取值范围是或.
【点睛】
本题主要考查的是反比例函数的应用,熟练掌握反比例函数的图象及性质是解题的关键.
3. (1)见解析
(2)
【解析】
【分析】
(1)根据E,F分别是,的中点,得出,根据平行线的性质,得出,,结合O是的中点,利用“AAS”得出,得出,即可证明是平行四边形;
(2)根据,E是中点,得出,即可得出,即,根据,得出CD=2,根据勾股定理得出AC的长,即可得出DE,根据平行四边形的性,得出.
(1)
解:(1)∵E,F分别是,的中点,
∴,
∴,,
∵O是的中点,
∴,
∴,
∴,
∴四边形是平行四边形.
(2)
∵,E是中点,
∴,
∴,
∴,
∴,
∵,
∴,
∴.
∵四边形DEFG为平行四边形,
∴.
【点睛】
本题主要考查了平行线四边形的判定和性质,勾股定理,直角三角形斜边上的中线,三角形全等的判定和性质,三角函数的定义,平行线的性质,中位线的性质,根据题意证明
,是解题的关键.
4. 任务一:见解析,;任务二:悬挂点的纵坐标的最小值是;;任务三:两种方案,见解析
【解析】
【分析】
任务一:根据题意,以拱顶为原点,建立如图1所示的直角坐标系,待定系数法求解析式即可求解;
任务二:根据题意,求得悬挂点的纵坐标,进而代入函数解析式即可求得横坐标的范围;
任务三:有两种设计方案,分情况讨论,方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼;方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为,根据题意求得任意一种方案即可求解.
【详解】
任务一:以拱顶为原点,建立如图1所示的直角坐标系,
则顶点为,且经过点.
设该抛物线函数表达式为,
则,
∴,
∴该抛物线的函数表达式是.
任务二:∵水位再上涨达到最高,灯笼底部距离水面至少,灯笼长,
∴悬挂点的纵坐标,
∴悬挂点的纵坐标的最小值是.
当时,,解得或,
∴悬挂点的横坐标的取值范围是.
任务三:有两种设计方案
方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.
∵,相邻两灯笼悬挂点的水平间距均为,
∴若顶点一侧挂4盏灯笼,则,
若顶点一侧挂3盏灯笼,则,
∴顶点一侧最多可挂3盏灯笼.
∵挂满灯笼后成轴对称分布,
∴共可挂7盏灯笼.
∴最左边一盏灯笼悬挂点的横坐标是.
方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为,
∵若顶点一侧挂5盏灯笼,则,
若顶点一侧挂4盏灯笼,则,
∴顶点一侧最多可挂4盏灯笼.
∵挂满灯笼后成轴对称分布,
∴共可挂8盏灯笼.
∴最左边一盏灯笼悬挂点的横坐标是.
【点睛】
本题考查了二次函数的应用,根据题意建立坐标系,掌握二次函数的性质是解题的关键.
5. (1)
(2)
(3)①或;②
【解析】
【分析】
(1)连接OD,设半径为r,利用,得,代入计算即可;
(2)根据CP=AP十AC,用含x的代数式表示 AP的长,再由(1)计算求AC的长即可;
(3)①显然,所以分两种情形,当 时,则四边形RPQE是矩形,当 ∠PQR=90°时,过点P作PH⊥BE于点H, 则四边形PHER是矩形,分别根据图形可得答案;
②连接,由对称可知,利用三角函数表示出和BF的长度,从而解决问题.
(1)
解:如图1,连结.设半圆O的半径为r.
∵切半圆O于点D,
∴.
∵,
∴,
∴,
∴,
即,
∴,即半圆O的半径是.
(2)
由(1)得:.
∵,
∴.
∵,
∴.
(3)
①显然,所以分两种情况.
ⅰ)当时,如图2.
∵,
∴.
∵,
∴四边形为矩形,
∴.
∵,
∴,
∴.
ⅱ)当时,过点P作于点H,如图3,
则四边形是矩形,
∴.
∵,
∴.
∵,
∴,
∴,
∴,
∴,
由得:,
∴.
综上所述,x的值是或.
②如图4,连结,
由对称可知,
∵BE⊥CE,PR⊥CE,
∴PR∥BE,
∴∠EQR=∠PRQ,
∵,,
∴EQ=3-x,
∵PR∥BE,
∴,
∴,
即:,
解得:CR=x+1,
∴ER=EC-CR=3-x,
即:EQ= ER
∴∠EQR=∠ERQ=45°,
∴
∴,
∴.
∵是半圆O的直径,
∴,
∴,
∴,
∴,
∴.
【点睛】
本题是圆的综合题,主要考查了切线的性质,相似三角形的判定与性质,圆周角定理,三角函数等知识,利用三角函数表示各线段的长并运用分类讨论思想是解题的关键.
6. (1);(2)
【解析】
【分析】
(1)先计算零次幂与算术平方根,再合并即可;
(2)先去分母,化为整式方程,再解整式方程并检验即可.
【详解】
解:(1)
(2),
去分母:
整理得:
经检验:是原方程的根,
所以原方程的根为:
【点睛】
本题考查的是零次幂的含义,求解一个数的算术平方根,分式方程的解法,掌握“以上基础运算”是解本题的关键.
7. 赞成小洁的说法,补充证明见解析
【解析】
【分析】
先由OB=OD,证明四边形是平行四边形,再利用对角线互相垂直,从而可得结论.
【详解】
解:赞成小洁的说法,补充
证明:∵OB=OD,
四边形是平行四边形,
AC⊥BD,
∴四边形ABCD是菱形.
【点睛】
本题考查的是平行四边形的判定,菱形的判定,掌握“菱形的判定方法”是解本题的关键.
8. (1)③;
(2)相等,证明见解析;
(3)
【解析】
【分析】
(1)③仔细观察①②的提示,再用含有相同规律的代数式表示即可;
(2)由再计算100a(a+1)+25,从而可得答案;
(3)由与100a的差为2525,列方程,整理可得再利用平方根的含义解方程即可.
(1)
解:①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225=;
(2)
解:相等,理由如下:
100a(a+1)+25=
(3)
与100a的差为2525,
整理得: 即
解得:
1≤a≤9,
【点睛】
本题考查的是数字的规律探究,完全平方公式的应用,单项式乘以多项式,利用平方根的含义解方程,理解题意,列出运算式或方程是解本题的关键.
9. (1)①见解析;②,
(2)①当时,y随x的增大而增大;②当时,y有最小值80
(3)和
【解析】
【分析】
(1)①根据表格数据在函数图像上描点连线即可;
②根据函数图像估计即可;
(2)从增减性、最值等方面说明即可;
(3)根据图像找到y=260时所有的x值,再结合图像判断即可.
(1)①
②观察函数图像:当时,;当y的值最大时,;.
(2)答案不唯一.①当时,y随x的增大而增大;②当时,y有最小值80.
(3)根据图像可得:当潮水高度超过260时和,
【点睛】
本题考查函数图像的画法、从函数图像获取信息,准确的画出函数图像是解题的关键.
10. (1)
(2)
【解析】
【分析】
(1)过点C作于点F,根据等腰三角形的性质可得, ,再利用锐角三角函数,即可求解;
(2)连结.设纸飞机机尾的横截面的对称轴为直线l,可得对称轴l经过点C.从而得到四边形DGCE是矩形,进而得到DE=CG,然后过点D作于点G,过点E作EH⊥AB于点H,可得,从而得到,再利用锐角三角函数,即可求解.
(1)
解:如图2,过点C作于点F,
∵,
∴,平分.
∴,
∴,
∴.
(2)
解:如图3,连结.设纸飞机机尾的横截面的对称轴为直线l,
∵纸飞机机尾的横截面示意图是一个轴对称图形,
∴对称轴l经过点C.
∴,,
∴AB∥DE.
过点D作于点G,过点E作EH⊥AB于点H,
∵DG⊥AB,HE⊥AB,
∴∠EDG =∠DGH=∠EHG=90°,
∴四边形DGCE是矩形,
∴DE=HG,
∴DG∥l, EH∥l,
∴,
∵,BE⊥CE,
∴,
∴,
∴.
【点睛】
本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.
11. (1)第二组
(2)175人
(3)该地区中小学生每周参加家庭劳动时间大多数都小于,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一)
【解析】
【分析】
(1)由中位数的定义即可得出结论;
(2)用1200乘“不喜欢”所占百分比即可;
(3)结合条形统计图进行解答即可.
(1)
解:由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,
308+295=603,
故中位数落在第二组;
(2)
解:(人,
答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;
(3)
解:由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).
【点睛】
本题考查的是频数分布直方图和扇形统计图的知识,解题的关键是读懂频数分布直方图和利用统计图获取信息.
12. (1)
(2)的值为4
(3)
【解析】
【分析】
(1)把代入即可解得抛物线的函数表达式为;
(2)将抛物线向上平移个单位得到抛物线,顶点为,关于原点的对称点为,代入可解得的值为4;
(3)把抛物线向右平移个单位得抛物线为,根据点B(1,y1),C(3,y2)都在抛物线上,当y1>y2时,可得,即可解得的取值范围是.
(1)
解:把代入得:
,
解得,
;
答:抛物线的函数表达式为;
(2)
解:抛物线的顶点为,
将抛物线向上平移个单位得到抛物线,则抛物线的顶点为,
而关于原点的对称点为,
把代入得:
,
解得,
答:的值为4;
(3)
解:把抛物线向右平移个单位得到抛物线,抛物线解析式为,
点,都在抛物线上,
,
,
y1>y2,
,
整理变形得:,
,
解得,
的取值范围是.
【点睛】
本题考查二次函数综合应用,涉及待定系数法,对称及平移变换等知识,解题的关键是能得出含字母的式子表达抛物线平移后的解析式.
13. (1)赞同,理由见解析,
(2)①,②点N是线段ME的“趣点”,理由见解析
【解析】
【分析】
(1)利用等腰三角形的性质证明 再利用 从而可得结论;
(2)①由题意可得: 再求解 证明 从而可得答案;②先证明可得 再证明 从而可得结论.
(1)
证明:赞同,理由如下:
等腰直角三角形ABC,
∴点P为线段AB的“趣点”.
(2)
①由题意可得:
DPE∽CPB,D,A重合,
②点N是线段ME的“趣点”,理由如下:
当点D为线段AC的“趣点”时(CD<AD),
而
同理可得:
点N是线段ME的“趣点”.
【点睛】
本题考查的是等腰直角三角形的性质,锐角三角函数的应用,相似三角形的判定与性质,三角形的外角的性质,等腰三角形的判定与性质,理解新定义的含义,掌握特殊的几何图形的性质是解本题的关键.
14. 0
【解析】
【分析】
先算乘方,再算乘法和减法,即可.
【详解】
【点睛】
本题考查实数的混合运算,关键是掌握.
15. AC=4,sinA=
【解析】
【分析】
根据勾股定理求出AC,根据正弦的定义计算,得到答案.
【详解】
解:∵∠C=90°,AB=5,BC=3,
∴.
.
【点睛】
本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.
16.
【解析】
【分析】
分别解出不等式①和②,再求两不等式解的公共部分,即可.
【详解】
解不等式①:
解不等式②:
∴原不等式组的解是
【点睛】
本题考查解不等式组,注意最终结果要取不等式①和②的公共部分.
17. (1)200人;36°
(2)见解析
(3)400人
【解析】
【分析】
(1)从两个统计图中可知,在抽查人数中,选择“体育运动”兴趣小组的人数为60人,占调查人数的30%,可求出调查人数,样本中选择“美工制作”兴趣小组占调查人数的,即10%,因此相应的圆心角的度数为360°的30%;
(2)求出选择“音乐舞蹈”兴趣小组的人数,即可补全条形统计图;
(3)用1600乘以样本中选择“爱心传递”兴趣小组的学生所占的百分比即可.
(1)
解:本次被抽查学生的总人数是(人),
扇形统计图中表示选择“美工制作”兴趣小组的扇形的圆心角度数是;
(2)
解:选择“音乐舞蹈”兴趣小组的人数为200-50-60-20-40=30(人),
补全条形统计图如图所示.
(3)
解:估计全校选择“爱心传递”兴趣小组的学生人数为(人).
【点睛】
本题考查了扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.
18. (1)见解析
(2)1
【解析】
【分析】
(1)连接OE,根据已知条件和切线的性质证明四边形OFCE是矩形,再根据矩形的性质证明即可;
(2)根据题意,结合(1)可知,再由直角三角形中“30°角所对的直角边是斜边的一般”的性质,可推导,最后由计算AD的长即可.
(1)
解:如图,连接OE,
∵AC切半圆O于点E,
∴OE⊥AC,
∵OF⊥BC,,
∴∠OEC=∠OFC=∠C=90°.
∴四边形OFCE是矩形,
∴OF=EC;
(2)
∵,
∴,
∵,OE⊥AC,
∴,
∴.
【点睛】
本题主要考查了切线的性质、矩形的判定与性质以及含30°角的直角三角形性质等知识,正确作出辅助线并灵活运用相关性质是解题关键.
19. (1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米
(2)点B的坐标是,s=60t-60
(3)小时
【解析】
【分析】
(1)设轿车行驶的时间为x小时,则大巴行驶的时间为小时,根据路程两车行驶的路程相等得到即可求解;
(2)由(1)中轿车行驶的时间求出点B的坐标是,进而求出直线AB的解析式;
(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到,进而求出a的值
(1)
解:设轿车行驶的时间为x小时,则大巴行驶的时间为小时.
根据题意,得:,
解得x=2.
则千米,
∴轿车出发后2小时追上大巴,此时,两车与学校相距120千米.
(2)
解:∵轿车追上大巴时,大巴行驶了3小时,
∴点B的坐标是.
由题意,得点A的坐标为.
设AB所在直线的解析式为,
则:
解得k=60,b=-60.
∴AB所在直线的解析式为s=60t-60.
(3)
解:由题意,得,
解得:,
故a的值为小时.
【点睛】
本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.
20. (1)①A(3,0),B(3,3),C(0,3);②
(2);
【解析】
【分析】
(1)①根据坐标与图形的性质即可求解;②利用待定系数法求解即可;
(2)证明Rt△ABP∽Rt△PCM,根据相似三角形的性质得到n关于m的二次函数,利用二次函数的性质即可求解.
(1)
解:①∵正方形OABC的边长为3,
∴点A,B,C的坐标分别为A(3,0),B(3,3),C(0,3);
②把点A(3,0),C(0,3)的坐标分别代入y=−x2+bx+c,
得,解得;
(2)
解:由题意,得∠APB=90°-∠MPC=∠PMC,∠B=∠PCM=90°,
∴Rt△ABP∽Rt△PCM,
∴,即.
整理,得,即.
∴当时,n的值最大,最大值是.
【点睛】
本题综合考查了正方形的性质,相似三角形的判定和性质,二次函数的性质,待定系数法求函数解析式,根据正方形的性质求出点A,B,C的坐标是解题的关键.
21. (1)①6;②见解析
(2),理由见解析
【解析】
【分析】
(1)①将面积用a,b的代数式表示出来,计算,即可
②利用AN公共边,发现△FAN∽△ANB,利用,得到a,b的关系式,化简,变形,即可得结论
(2)等边与等边共顶点B,形成手拉手模型,△ABC≌△FBE,利用全等的对应边,对应角,得到:AC=FE=b,∠FEB=∠ACB=90°,从而得到∠FEC=30°,再利用,,得到a与b的关系,从而得到结论
(1)
∵,
∴b=3,a=4
∵∠ACB=90°
∴
②由题意得:∠FAN=∠ANB=90°,
∵FH⊥AB
∴∠AFN=90°-∠FAH=∠NAB
∴△FAN∽△ANB
∴
∴,
得:
∴.
即
(2)
,理由如下:
∵△ABF和△BEC都是等边三角形
∴AB=FB,∠ABC=60°-∠FBC=∠FBE,CB=EB
∴△ABC≌△FBE(SAS)
∴AC=FE=b
∠FEB=∠ACB=90°
∴∠FEC=30°
∵EF⊥CF,CE=BC=a
∴
∴
∴
由题意得:,
∴
∴
【点睛】
本题考查勾股定理,相似,手拉手模型,代数运算,本题难点是图二中的相似和图三中的手拉手全等
22. (1)1
(2)
【解析】
【分析】
(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可;
(2)利用加减消元法解二元一次方程组即可.
(1)
解:原式=;
(2)
,
①+②得3x=6,
∴x=2,
把x=2代入②,得y=0,
∴原方程组的解是.
【点睛】
本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.
23. (1)m为60,n为20
(2)640人
【解析】
【分析】
(1)先求出被调查总人数,再根据扇形统计图求出,用总人数减去、、的人数,即可得的值;
(2)用被调查情况估计八年级800人的情况,即可得到答案.
(1)
解:被调查总人数:(人,
(人,
(人,
答:为60,为20;
(2)
解:当时,在被调查的100人中有(人,
在该校八年级学生800人中,每日完成书面作业所需时长满足的共有(人,
答:估计共有640人.
【点睛】
本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.
24. (1)y=x+1(0≤x≤5),图见解析
(2)4小时
【解析】
【分析】
(1)观察表格数据,的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图像即可求解;
(2)根据,代入解析式求得的值即可求解.
(1)
(1)选择y=kx+b,将(0,1),(1,2)代入,
得解得
∴y=x+1(0≤x≤5).
(2)
当y=5时,x+1=5,
∴x=4.
答:当水位高度达到5米时,进水用时x为4小时.
【点睛】
本题考查了一次函数的性质,画一次函数图像,求一次函数的解析式,根据题意建立模型是解题的关键.
25. (1)47°
(2)3.3米
【解析】
【分析】
(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;
(2)分别求出和的正切值,用表示出和,得到一个只含有的关系式,再解答即可.
(1)
解:,,
,
答:的度数是.
(2)
解:在Rt△ABC中,,
∴.
同理,在Rt△ADC中,有.
∵,
∴.
∴,
∴(米).
答:表AC的长是3.3米.
【点睛】
本题主要考查了三角形外角的性质和三角函数,解题的关键是熟练掌握建模思想来解决.
26. (1)
(2)见解析
【解析】
【分析】
(1)连接,由,得,由弧长公式即得的长为;
(2)根据切于点,,可得,有,而,即可得,从而平分.
(1)
解:连接OA,
∵∠ACB=20°,
∴∠AOD=40°,
∴,
.
(2)
证明:,
,
切于点,
,
,
,
,
,
平分.
【点睛】
本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.
辽宁省2022年中考数学卷真题分题型分层汇编-10解答题(基础提升): 这是一份辽宁省2022年中考数学卷真题分题型分层汇编-10解答题(基础提升),共25页。试卷主要包含了77,cs50°≈0,00,6,,3+76等内容,欢迎下载使用。
辽宁省2022年中考数学卷真题分题型分层汇编-08解答题(基础题): 这是一份辽宁省2022年中考数学卷真题分题型分层汇编-08解答题(基础题),共19页。试卷主要包含了﹣2+|﹣2|,计算,﹣2,,其中m=2,先化简,再求值,﹣1,÷,其中x=6,÷,其中a=4等内容,欢迎下载使用。
浙江省2022年中考数学卷真题分题型分层汇编-02选择题(基础提升): 这是一份浙江省2022年中考数学卷真题分题型分层汇编-02选择题(基础提升),共15页。试卷主要包含了单选题,四条直线,分别于等内容,欢迎下载使用。