浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升)
展开
这是一份浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升),共36页。试卷主要包含了已知,,,,,求AC的长和sinA的值等内容,欢迎下载使用。
浙江省2022年中考数学卷真题分题型分层汇编-08解答题(基础提升)
1. (2022·浙江温州)如图,是的角平分线,,交于点E.
(1)求证:.
(2)当时,请判断与的大小关系,并说明理由.
2. (2022·浙江温州)已知反比例函数的图象的一支如图所示,它经过点.
(1)求这个反比例函数的表达式,并补画该函数图象的另一支.
(2)求当,且时自变量x的取值范围.
3. (2022·浙江温州)如图,在中,于点D,E,F分别是的中点,O是的中点,的延长线交线段于点G,连结,,.
(1)求证:四边形是平行四边形.
(2)当,时,求的长.
4. (2022·浙江温州)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽,拱顶离水面.据调查,该河段水位在此基础上再涨达到最高.
素材2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决
任务1
确定桥拱形状
在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2
探究悬挂范围
在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3
拟定设计方案
给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
5. (2022·浙江温州)如图1,为半圆O的直径,C为延长线上一点,切半圆于点D,,交延长线于点E,交半圆于点F,已知.点P,Q分别在线段上(不与端点重合),且满足.设.
(1)求半圆O的半径.
(2)求y关于x的函数表达式.
(3)如图2,过点P作于点R,连结.
①当为直角三角形时,求x的值.
②作点F关于的对称点,当点落在上时,求的值.
6. (2022·浙江嘉兴)(1)计算:
(2)解方程:.
7. (2022·浙江嘉兴)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.
小惠:
证明:∵AC⊥BD,OB=OD,
∴AC垂直平分BD.
∴AB=AD,CB=CD,
∴四边形ABCD是菱形.
小洁:
这个题目还缺少条件,需要补充一个条件才能证明.
若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.
8. (2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
(1)尝试:
①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225= ;
……
(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
(3)运用:若与100a的差为2525,求a的值.
9. (2022·浙江嘉兴)6月13日,某港口的潮水高度y()和时间x(h)的部分数据及函数图像如下:
x(h)
…
11
12
13
14
15
16
17
18
…
y()
…
189
137
103
80
101
133
202
260
…
(数据来自某海洋研究所)
(1)数学活动:
①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图像.
②观察函数图像,当时,y的值为多少?当y的值最大时,x的值为多少?
(2)数学思考:
请结合函数图像,写出该函数的两条性质或结论.
(3)数学应用:
根据研究,当潮水高度超过260时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?
10. (2022·浙江嘉兴)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知,,,,.(结果精确到0.1,参考数据:,,,,,)
(1)连结,求线段的长.
(2)求点A,B之间的距离.
11. (2022·浙江嘉兴)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:
中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x
相关试卷
这是一份辽宁省2022年中考数学卷真题分题型分层汇编-10解答题(基础提升),共25页。试卷主要包含了77,cs50°≈0,00,6,,3+76等内容,欢迎下载使用。
这是一份辽宁省2022年中考数学卷真题分题型分层汇编-08解答题(基础题),共19页。试卷主要包含了﹣2+|﹣2|,计算,﹣2,,其中m=2,先化简,再求值,﹣1,÷,其中x=6,÷,其中a=4等内容,欢迎下载使用。
这是一份浙江省2022年中考数学卷真题分题型分层汇编-02选择题(基础提升),共15页。试卷主要包含了单选题,四条直线,分别于等内容,欢迎下载使用。