|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年上海市中考(初中毕业统一学业考试)数学真题试卷(含详解)
    立即下载
    加入资料篮
    2022年上海市中考(初中毕业统一学业考试)数学真题试卷(含详解)01
    2022年上海市中考(初中毕业统一学业考试)数学真题试卷(含详解)02
    2022年上海市中考(初中毕业统一学业考试)数学真题试卷(含详解)03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年上海市中考(初中毕业统一学业考试)数学真题试卷(含详解)

    展开
    这是一份2022年上海市中考(初中毕业统一学业考试)数学真题试卷(含详解),共25页。试卷主要包含了 8的相反数是, 下列运算正确的是……, 已知反比例函数y=, 下列说法正确的是, 计算, 已知f=_____., 解方程组的结果为_____.等内容,欢迎下载使用。

    2022年上海中考数学真题
    一.选择题
    1. 8的相反数是( )
    A B. 8 C. D.
    2. 下列运算正确的是……( )
    A. a²+a³=a6 B. (ab)2 =ab2 C. (a+b)²=a²+b² D. (a+b)(a-b)=a² -b2
    3. 已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为( )
    A. (2,3) B. (-2,3) C. (3,0) D. (-3,0)
    4. 我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是( )
    A. 平均数 B. 中位数 C. 众数 D. 方差
    5. 下列说法正确的是( )
    A. 命题一定有逆命题 B. 所有的定理一定有逆定理
    C. 真命题的逆命题一定是真命题 D. 假命题的逆命题一定是假命题
    6. 有一个正n边形旋转后与自身重合,则n为( )
    A 6 B. 9 C. 12 D. 15
    二.填空题
    7. 计算:3a-2a=__________.
    8. 已知f(x)=3x,则f(1)=_____.
    9. 解方程组的结果为_____.
    10. 已知x-x+m=0有两个不相等的实数根,则m的取值范围是_____.
    11. 甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.
    12. 某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.
    13. 为了解学生阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人,1-2小时10人,2-3小时14人,3-4小时16人,4-5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是_____.

    14. 已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:_____.
    15. 如图所示,在口ABCD中,AC,BD交于点O,则=_____.

    16. 如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为_____.(结果保留)

    17. 如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,,则_____.

    18. 定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.
    三.解答题
    19. 计算:
    20. 解关于x的不等式组
    21. 一个一次函数的截距为1,且经过点A(2,3).
    (1)求这个一次函数的解析式;
    (2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.
    22. 我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.

    (1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)
    (2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度
    23. 如图所示,等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB求证:

    (1)∠CAE=∠BAF;
    (2)CF·FQ=AF·BQ
    24. 已知:经过点,.
    (1)求函数解析式;
    (2)平移抛物线使得新顶点为(m>0).
    ①倘若,且在的右侧,两抛物线都上升,求的取值范围;
    ②在原抛物线上,新抛物线与轴交于,时,求点坐标.
    25. 平行四边形,若为中点,交于点,连接.

    (1)若,
    ①证明为菱形;
    ②若,,求的长.
    (2)以为圆心,为半径,为圆心,为半径作圆,两圆另一交点记为点,且.若在直线上,求值.

    2022年上海中考数学真题
    一.选择题
    1. 8的相反数是( )
    A. B. 8 C. D.
    【答案】A
    【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
    【详解】解:8的相反数是,
    故选A.
    【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.
    2. 下列运算正确的是……( )
    A. a²+a³=a6 B. (ab)2 =ab2 C. (a+b)²=a²+b² D. (a+b)(a-b)=a² -b2
    【答案】D
    【分析】根据整式加法判定A;运用积的乘方计算关判定B;运用完全平方公式计算并判定C;运用平方差公式计算并判定D.
    【详解】解:A.a²+a³没有同类项不能合并,故此选项不符合题意;
    B.(ab)2 =a2b2,故此选项不符合题意;
    C.(a+b)²=a²+2ab+b²,故此选项不符合题意
    D(a+b)(a-b)=a² -b2,故此选项符合题意
    故选:D.
    【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.
    3. 已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为( )
    A. (2,3) B. (-2,3) C. (3,0) D. (-3,0)
    【答案】B
    【分析】根据反比例函数性质求出k<0,再根据k=xy,逐项判定即可.
    【详解】解:∵反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,,
    ∴k=xy<0,
    A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
    B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;
    C、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
    D、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
    故选:B.
    【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.
    4. 我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是( )
    A. 平均数 B. 中位数 C. 众数 D. 方差
    【答案】D
    【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.
    【详解】解:将这组数据都加上6得到一组新的数据,
    则新数据的平均数改变,众数改变,中位数改变,但是方差不变;
    故选:D.
    【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.
    5. 下列说法正确的是( )
    A. 命题一定有逆命题 B. 所有的定理一定有逆定理
    C. 真命题的逆命题一定是真命题 D. 假命题的逆命题一定是假命题
    【答案】A
    【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.
    【详解】解:A、命题一定有逆命题,故此选项符合题意;
    B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;
    C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意;
    D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.
    故选:A.
    【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.
    6. 有一个正n边形旋转后与自身重合,则n为( )
    A. 6 B. 9 C. 12 D. 15
    【答案】C
    【分析】根据选项求出每个选项对应的正多边形的中心角度数,与一致或有倍数关系的则符合题意.
    【详解】如图所示,计算出每个正多边形中心角,是的3倍,则可以旋转得到.
    A.
    B.
    C.
    D.
    观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合
    故选C.
    【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.
    二.填空题
    7. 计算:3a-2a=__________.
    【答案】a
    【详解】根据同类项与合并同类项法则计算:3a-2a=(3-2)a=a
    8. 已知f(x)=3x,则f(1)=_____.
    【答案】3
    【分析】直接代入求值即可.
    【详解】解:∵f(x)=3x,
    ∴f(1)=3×1=3,
    故答案为:3
    【点睛】本题主要考查了求函数值,直接把自变量的值代入即可.
    9. 解方程组的结果为_____.
    【答案】
    【分析】利用平方差公式将②分解因式变形,继而可得④,联立①④利用加减消元法,算出结果即可.
    【详解】解:
    由②,得:③,
    将①代入③,得:,即④,
    ①+②,得:,
    解得:,
    ①−②,得:,
    解得:,
    ∴方程组的结果为 .
    【点睛】本题考查解二元二次方程组,与平方差公式分解因式,能够熟练掌握平方差公式分解因式是解决本题的关键.
    10. 已知x-x+m=0有两个不相等的实数根,则m的取值范围是_____.
    【答案】m<3
    【分析】根据方程有两个不相等的实数根,则Δ>0,即(-2)2-4m>0,求解即可.
    【详解】解:∵x-x+m=0有两个不相等的实数根,
    ∴Δ=(-2)2-4m>0
    解得:m<3,
    故答案为: m<3.
    【点睛】本题考查一元二次方程根的判别式,熟练掌握“当方程有两个不相等的实数根,Δ>0;当方程有两个相等的实数根,Δ=0;当方程没有实数根,Δ<0”是解题的关键.
    11. 甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.
    【答案】
    【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与分到甲和乙的情况,再利用概率公式求解即可求得答案.
    【详解】解:画树形图如下:

    由树形图可知所有可能情况共6种,其中分到甲和乙的情况有2中,
    所以分到甲和乙的概率为,
    故答案为:
    【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.
    12. 某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.
    【答案】20%
    【分析】根据该公司5、6两个月营业额的月均增长率为x结合5月、7月营业额即可得出关于x的一元二次方程,解此方程即可得解.
    【详解】解:设该公司5、6两个月营业额的月均增长率为x,根据题意得,

    解得,(舍去)
    所以,增长率为20%
    故答案为:20%
    【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.
    13. 为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人,1-2小时10人,2-3小时14人,3-4小时16人,4-5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是_____.

    【答案】88
    【分析】由200乘以样本中不低于3小时的人数的百分比即可得到答案.
    【详解】解:该学校六年级学生阅读时间不低于3小时的人数是

    故答案为:
    【点睛】本题考查的是利用样本估计总体,求解学生阅读时间不低于3小时的人数的百分比是解本题的关键.
    14. 已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:_____.
    【答案】(答案不唯一)
    【分析】直接根据一次函数的图象与系数的关系即可得出结论.
    【详解】∵直线过第一象限且函数值随着x的增大而减小,
    ∴,,
    ∴符合条件的一条直线可以为:(答案不唯一).
    【点睛】本题考查一次函数的图象与系数的关系,熟知一次函数(),当,时,函数图象过第一象限且函数值随着x的增大而减小.
    15. 如图所示,在口ABCD中,AC,BD交于点O,则=_____.

    【答案】
    【分析】利用向量相减平行四边形法则:向量相减时,起点相同,差向量即从后者终点指向前者终点即可求解.
    【详解】解:∵四边形ABCD是平行四边形,AC,BD交于点O,
    又,,
    ∴,
    ∴,
    故答案为:.
    【点睛】本题考查平行四边形的性质,向量相减平行四边形法则,解题的关键是熟练掌握向量相减平行四边形法则.
    16. 如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛面积为_____.(结果保留)

    【答案】400π
    【详解】解:过点O作OD⊥AB于D,连接OB,如图,

    ∵AC=11,BC=21,
    ∴AB=AC+BC=32,
    ∵OD⊥AB于D,
    ∴AD=BD=AB=16,
    ∴CD=AD-AC=5,
    在Rt△OCD中,由勾股定理,得
    OD==12,
    在Rt△OBD中,由勾股定理,得
    OB==20,
    ∴这个花坛的面积=202π=400π,
    故答案为:400π.
    【点睛】本题考查垂径定理,勾股定理,圆的面积,熟练掌握垂径定理与勾股定理相结合求线段长是解题的关键.
    17. 如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,,则_____.

    【答案】或
    【分析】由题意可求出,取AC中点E1,连接DE1,则DE1是△ABC的中位线,满足,进而可求此时,然后在AC上取一点E2,使得DE1=DE2,则,证明△DE1E2是等边三角形,求出E1E2=,即可得到,问题得解.
    【详解】解:∵D为AB中点,
    ∴,即,
    取AC中点E1,连接DE1,则DE1是△ABC的中位线,此时DE1∥BC,,
    ∴,
    在AC上取一点E2,使得DE1=DE2,则,
    ∵∠A=30°,∠B=90°,
    ∴∠C=60°,BC=,
    ∵DE1∥BC,
    ∴∠DE1E2=60°,
    ∴△DE1E2是等边三角形,
    ∴DE1=DE2=E1E2=,
    ∴E1E2=,
    ∵,
    ∴,即,
    综上,的值为:或,
    故答案为:或.

    【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据进行分情况求解是解题的关键.
    18. 定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.
    【答案】##
    【分析】如图,当等弦圆O最大时,则经过等腰直角三角形的直角顶点C,连接CO交AB于F,连接OE,DK,再证明经过圆心,,分别求解AC,BC,CF, 设的半径为 再分别表示 再利用勾股定理求解半径r即可.
    【详解】解:如图,当等弦圆O最大时,则经过等腰直角三角形的直角顶点C,连接CO交AB于F,连接OE,DK,


    过圆心O,,


    设的半径为




    整理得:
    解得:

    不符合题意,舍去,
    ∴当等弦圆最大时,这个圆的半径为
    故答案为:
    【点睛】本题考查的是等腰直角三角形的性质,直角三角形斜边上的中线的性质,弦,弧,圆心角之间的关系,圆周角定理的应用,勾股定理的应用,一元二次方程的解法,掌握以上知识是解本题的关键.
    三.解答题
    19. 计算:
    【答案】
    分析】原式分别化简,再进行合并即可得到答案.
    【详解】解:
    =
    =
    【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.
    20. 解关于x的不等式组
    【答案】-2 【分析】分别求出不等式组中每一个不等式的解集,再确定出公共部分,即可求解.
    【详解】解:,
    解①得:x>-2,
    解②得:x<-1,
    ∴-2 【点睛】本题考查解一元一次不等式组,熟练掌握根据“大取较大,小小取较小,大小小大中间找,大大小小无处找”的原则性确定不等式组的解集是解题的关键.
    21. 一个一次函数的截距为1,且经过点A(2,3).
    (1)求这个一次函数的解析式;
    (2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.
    【答案】(1)y=x+1
    (2)
    【小问1详解】
    解:设这个一次函数的解析式y=kx+1,
    把A(2,3)代入,得3=2k+1,
    解得:k=1,
    ∴这个一次函数的解析式为y=x+1;
    【小问2详解】
    解:如图,

    设反比例函数解析式为y=,
    把A(2,3)代入,得3=,
    解得:m=6,
    ∴反比例函数解析式为y=,
    当x=6时,则y==1,
    ∴B(6,1),
    ∴AB=,
    ∵将点B向上平移2个单位得到点C,
    ∴C(6,3),BC=2,
    ∵A(2,3),C(6,3),
    ∴ACx轴,
    ∵B(6,1),C(6,3),
    ∴BC⊥x轴,
    ∴AC⊥BC,
    ∴∠ACB=90°,
    ∴△ABC是直角三角形,
    ∴cos∠ABC=.
    【点睛】本题考查待定系数法求函数解析式,点的平移,解三角形,坐标与图形,求得AC⊥BC是解题的关键.
    22. 我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.

    (1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)
    (2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度
    【答案】(1)atanα+b米
    (2)3.8米
    【分析】(1)由题意得BD=a,CD=b,∠ACE=α,根据四边形CDBE为矩形,得到BE=CD=b,BD=CE=a,在Rt∆ACE中,由正切函数tanα= ,即可得到AB的高度;
    (2)根据AB∥ED,得到∆ABF~∆EDF,根据相似三角形的对应边成比例得到 ,又根据AB∥GC,得出∆ABH~∆GCH,根据相似三角形的对应边成比例得到 联立得到二元一次方程组解之即可得;
    【小问1详解】
    解:如图

    由题意得BD=a,CD=b,∠ACE=α
    ∠B=∠D=∠CEB=90°
    ∴四边形CDBE为矩形,
    则BE=CD=b,BD=CE=a,
    在Rt∆ACE中,tanα= ,
    得AE=CE=CE×tanα=a tanα
    而AB=AE+BE,
    故AB= a tanα+b
    答:灯杆AB的高度为atanα+b米
    【小问2详解】
    由题意可得,AB∥GC∥ED,GC=ED=2,CH=1,DF=3,CD=1.8
    由于AB∥ED,
    ∴∆ABF~∆EDF,
    此时
    即①,
    ∵AB∥GC
    ∴∆ABH~∆GCH,
    此时,

    联立①②得

    解得:
    答:灯杆AB的高度为3.8米
    【点睛】本题考查了相似三角形的应用,锐角三角函数的应用,以及二元一次方程组,解题的关键是读懂题意,熟悉相似三角形的判定与性质.
    23. 如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB求证:

    (1)∠CAE=∠BAF;
    (2)CF·FQ=AF·BQ
    【答案】(1)见解析 (2)见解析
    【分析】(1)利用SAS证明△ACE≌△ABF即可;
    (2)先证△ACE∽△AFQ可得∠AEC=∠AQF,求出∠BQF=∠AFE,再证△CAF∽△BFQ,利用相似三角形的性质得出结论.
    【小问1详解】
    证明:∵AB=AC,
    ∴∠B=∠C,
    ∵CF=BE,
    ∴CE=BF,
    在△ACE和△ABF中,,
    ∴△ACE≌△ABF(SAS),
    ∴∠CAE=∠BAF;
    【小问2详解】
    证明:∵△ACE≌△ABF,
    ∴AE=AF,∠CAE=∠BAF,
    ∵AE²=AQ·AB,AC=AB,
    ∴,即,
    ∴△ACE∽△AFQ,
    ∴∠AEC=∠AQF,
    ∴∠AEF=∠BQF,
    ∵AE=AF,
    ∴∠AEF=∠AFE,
    ∴∠BQF=∠AFE,
    ∵∠B=∠C,
    ∴△CAF∽△BFQ,
    ∴,即CF·FQ=AF·BQ.
    【点睛】本题考查了等腰三角形性质,全等三角形的判定和性质以及相似三角形的判定和性质,熟练掌握相关判定定理和性质定理是解题的关键.
    24. 已知:经过点,.
    (1)求函数解析式;
    (2)平移抛物线使得新顶点为(m>0).
    ①倘若,且在的右侧,两抛物线都上升,求的取值范围;
    ②在原抛物线上,新抛物线与轴交于,时,求点坐标.
    【答案】(1)
    (2)①k≥2
    ②P的坐标为(2,3)或(-2,3)
    【分析】(1)把,代入,求解即可;
    (2)①由,得顶点坐标为(0,-3),即点B是原抛物线的顶点,由平移得抛物线向右平移了m个单位,根据,求得m=2,在的右侧,两抛物线都上升,根据抛物线的性质即可求出k取值范围;
    ②把P(m,n)代入,得n=,则P(m, ),从而求得新抛物线解析式为:y=(x-m)2+n=x2-mx+m2-3,则Q(0,m2-3),从而可求得BQ=m2,BP2=,PQ2=,即可得出BP=PQ,过点P作PC⊥y轴于C,则PC=|m|,根据等腰三角形的性质可得BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,再根据tan∠BPC= tan 60°=,即可求出m值,从而求出点P坐标.
    【小问1详解】
    解:把,代入,得
    ,解得:,
    ∴函数解析式为:;
    【小问2详解】
    解:①∵,
    ∴顶点坐标为(0,-3),即点B是原抛物线的顶点,
    ∵平移抛物线使得新顶点为(m>0).
    ∴抛物线向右平移了m个单位,
    ∴,
    ∴m=2,
    ∴平移抛物线对称轴为直线x=2,开口向上,
    ∵在的右侧,两抛物线都上升,
    又∵原抛物线对称轴为y 轴,开口向上,
    ∴k≥2,
    ②把P(m,n)代入,得n=,
    ∴P(m, )
    根据题意,得新抛物线解析式为:y=(x-m)2+n=x2-mx+m2-3,
    ∴Q(0,m2-3),
    ∵B(0,-3),
    ∴BQ=m2,BP2=,
    PQ2=,
    ∴BP=PQ,
    如图,过点P作PC⊥y轴于C,则PC=|m|,

    ∵BP=PQ,PC⊥BQ,
    ∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,
    ∴tan∠BPC= tan 60°=,
    解得:m=±2,
    ∴n==3,
    故P的坐标为(2,3)或(-2,3)
    【点睛】本题考查待定系数法求抛物线解析式,抛物线的平移,抛物线的性质,解直角三角形,等腰三角形的性质,本题属抛物线综合题目,属中考常考试题目,难度一般.
    25. 平行四边形,若为中点,交于点,连接.

    (1)若,
    ①证明为菱形;
    ②若,,求的长.
    (2)以为圆心,为半径,为圆心,为半径作圆,两圆另一交点记为点,且.若在直线上,求的值.
    【答案】(1)①见解析;②
    (2)
    【分析】(1)①连接AC交BD于O,证△AOE≌△COE(SSS),得∠AOE=∠COE,从而得∠COE=90°,则AC⊥BD,即可由菱形的判定定理得出结论;
    ②先证点E是△ABC的重心,由重心性质得BE=2OE,然后设OE=x,则BE=2x,在Rt△AOE中,由勾股定理,得OA2=AE2-OE2=32-x2=9-x2,在Rt△AOB中,由勾股定理,得OA2=AB2-OB2=52-(3x)2=25-9x2,从而得9-x2=25-9x2,解得:x=,即可得OB=3x=3,再由平行四边形性质即可得出BD长;
    (2)由⊙A与⊙B相交于E、F,得AB⊥EF,点E是△ABC的重心,又在直线上,则CG是△ABC的中线,则AG=BG=AB,根据重心性质得GE=CE=AE,CG=CE+GE=AE,在Rt△AGE中,由勾股定理,得AG2=AE2-GEE=AE2-(AE)2=AE2,则AG=AE,所以AB=2AG=AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=AE2+(AE)2=5AE2,则BC=AE,代入即可求得的值.
    【小问1详解】
    ①证明:如图,连接AC交BD于O,

    ∵平行四边形,
    ∴OA=OC,
    ∵AE=CE,OE=OE,
    ∴△AOE≌△COE(SSS),
    ∴∠AOE=∠COE,
    ∵∠AOE+∠COE=180°,
    ∴∠COE=90°,
    ∴AC⊥BD,
    ∵平行四边形,
    ∴四边形是菱形;
    ②∵OA=OC,
    ∴OB是△ABC的中线,
    ∵为中点,
    ∴AP是△ABC的中线,
    ∴点E是△ABC的重心,
    ∴BE=2OE,
    设OE=x,则BE=2x,
    在Rt△AOE中,由勾股定理,得OA2=AE2-OE2=32-x2=9-x2,
    在Rt△AOB中,由勾股定理,得OA2=AB2-OB2=52-(3x)2=25-9x2,
    ∴9-x2=25-9x2,
    解得:x=,
    ∴OB=3x=3,
    ∵平行四边形,
    ∴BD=2OB=6;
    【小问2详解】
    解:如图,

    ∵⊙A与⊙B相交于E、F,
    ∴AB⊥EF,
    由(1)②知点E是△ABC的重心,
    又在直线上,
    ∴CG是△ABC的中线,
    ∴AG=BG=AB,GE=CE,
    ∵CE=AE,
    ∴GE=AE,CG=CE+GE=AE,
    在Rt△AGE中,由勾股定理,得
    AG2=AE2-GEE=AE2-(AE)2=AE2,
    ∴AG=AE,
    ∴AB=2AG=AE,
    在Rt△BGC中,由勾股定理,得
    BC2=BG2+CG2=AE2+(AE)2=5AE2,
    ∴BC=AE,
    ∴.
    【点睛】本题考查平行四边形的性质,菱形的判定,重心的性质,勾股定理,相交两圆的公共弦的性质,本题属圆与四边形综合题目,掌握相关性质是解题的关键,属是考常考题目.
    相关试卷

    2021年上海市中考(初中毕业统一学业考试)数学真题(学生版): 这是一份2021年上海市中考(初中毕业统一学业考试)数学真题(学生版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年上海市中考(初中毕业统一学业考试)数学试题(学生版): 这是一份2020年上海市中考(初中毕业统一学业考试)数学试题(学生版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年上海市初中毕业统一学业考试数学试卷: 这是一份2020年上海市初中毕业统一学业考试数学试卷,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map