2022年福建省漳州市中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )
A.30° B.40° C.50° D.60°
2.如图,是的直径,弦,,,则阴影部分的面积为( )
A.2π B.π C. D.
3.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
A. B. C. D.
4.下列各式计算正确的是( )
A. B. C. D.
5.满足不等式组的整数解是( )
A.﹣2 B.﹣1 C.0 D.1
6.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为( )
A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
7.已知一个正多边形的一个外角为36°,则这个正多边形的边数是( )
A.8 B.9 C.10 D.11
8.下列计算正确的是( )
A. B.(﹣a2)3=a6 C. D.6a2×2a=12a3
9.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )
A.8×1012 B.8×1013 C.8×1014 D.0.8×1013
10.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.已知,且,则的值为__________.
12.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是_________.
13.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.
14.若反比例函数的图象与一次函数y=ax+b的图象交于点A(﹣2,m)、B(5,n),则3a+b的值等于_____.
15.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.
16.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是 .
17.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.
三、解答题(共7小题,满分69分)
18.(10分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
19.(5分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
(2)先化简,再求值:÷(2+),其中a= .
20.(8分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.
21.(10分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
22.(10分)当x取哪些整数值时,不等式与4﹣7x<﹣3都成立?
23.(12分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
①求证:BE′+BF=2,
②求出四边形OE′BF的面积.
24.(14分)分式化简:(a-)÷
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.
2、D
【解析】
分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
详解:连接OD,
∵CD⊥AB,
∴ (垂径定理),
故
即可得阴影部分的面积等于扇形OBD的面积,
又∵
∴ (圆周角定理),
∴OC=2,
故S扇形OBD=
即阴影部分的面积为.
故选D.
点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
3、C
【解析】
试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;
B. 是轴对称图形,不是中心对称图形,故本选项错误;
C. 既是中心对称图又是轴对称图形,故本选项正确;
D. 是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
4、C
【解析】
解:A.2a与2不是同类项,不能合并,故本选项错误;
B.应为,故本选项错误;
C.,正确;
D.应为,故本选项错误.
故选C.
【点睛】
本题考查幂的乘方与积的乘方;同底数幂的乘法.
5、C
【解析】
先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.
【详解】
∵解不等式①得:x≤0.5,
解不等式②得:x>-1,
∴不等式组的解集为-1<x≤0.5,
∴不等式组的整数解为0,
故选C.
【点睛】
本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.
6、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
31600000000=3.16×1.故选:C.
【点睛】
本题考查科学记数法,解题的关键是掌握科学记数法的表示.
7、C
【解析】
试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.
考点:多边形的内角和外角.
8、D
【解析】
根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.
【详解】
,A选项错误;(﹣a2)3=- a6,B错误;,C错误;. 6a2×2a=12a3 ,D正确;故选:D.
【点睛】
本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.
9、B
【解析】
80万亿用科学记数法表示为8×1.
故选B.
点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
10、D
【解析】
A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;
B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;
C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;
D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.
详解:∵,
∴设a=6x,b=5x,c=4x,
∵a+b-2c=6,
∴6x+5x-8x=6,
解得:x=2,
故a=1.
故答案为1.
点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.
12、136°.
【解析】
由圆周角定理得,∠A=∠BOD=44°,
由圆内接四边形的性质得,∠BCD=180°-∠A=136°
【点睛】
本题考查了1.圆周角定理;2. 圆内接四边形的性质.
13、.
【解析】
作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,
可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.
【详解】
解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.
由作图知,四边形为平行四边形,
由对称可知
,即
四边形为矩形
在中,
在Rt△BGK中, BK=2,GK=6,
∴BG2,
∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.
故答案为:2+2.
【点睛】
本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.
14、0
【解析】
分析:本题直接把点的坐标代入解析式求得之间的关系式,通过等量代换可得到的值.
详解:分别把A(−2,m)、B(5,n),
代入反比例函数的图象与一次函数y=ax+b得
−2m=5n,−2a+b=m,5a+b=n,
综合可知5(5a+b)=−2(−2a+b),
25a+5b=4a−2b,
21a+7b=0,
即3a+b=0.
故答案为:0.
点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础.
15、或
【解析】
试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.
考点:翻折变换(折叠问题).
16、(﹣b,a)
【解析】
解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),
设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=
同理cos α==sinβ=
所以x=﹣b,y=a,
故A1坐标为(﹣b,a).
【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.
17、4
【解析】
∵AE=ED,AE+ED=AD,∴ED=AD,
∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,
∴△DEF∽△BCF,
∴DF:BF=DE:BC=2:3,
∵DF+BF=BD=10,
∴DF=4,
故答案为4.
三、解答题(共7小题,满分69分)
18、-17.1
【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
【详解】
解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
=﹣8﹣14﹣9÷(﹣2),
=﹣62+4.1,
=﹣17.1.
【点睛】
此题要注意正确掌握运算顺序以及符号的处理.
19、(1)5+;(2)
【解析】
试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;
(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.
试题解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;
(2)原式==,
当a=时,原式==.
20、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.
【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.
【详解】
解:(2)如图2,
∵∠DPC=∠A=∠B=90°,
∴∠ADP+∠APD=90°,
∠BPC+∠APD=90°,
∴∠APD=∠BPC,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(2)结论ADBC=APBP仍成立;
证明:如图2,∵∠BPD=∠DPC+∠BPC,
又∵∠BPD=∠A+∠APD,
∴∠DPC+∠BPC=∠A+∠APD,
∵∠DPC=∠A=θ,
∴∠BPC=∠APD,
又∵∠A=∠B=θ,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(3)如下图,过点D作DE⊥AB于点E,
∵AD=BD=2,AB=6,
∴AE=BE=3
∴DE==4,
∵以D为圆心,以DC为半径的圆与AB相切,
∴DC=DE=4,
∴BC=2-4=2,
∵AD=BD,
∴∠A=∠B,
又∵∠DPC=∠A,
∴∠DPC=∠A=∠B,
由(2)(2)的经验得AD•BC=AP•BP,
又∵AP=t,BP=6-t,
∴t(6-t)=2×2,
∴t=2或t=2,
∴t的值为2秒或2秒.
【点睛】
本题考查圆的综合题.
21、证明过程见解析
【解析】
由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.
【详解】
∵∠BAE=∠BCE=∠ACD=90°,
∴∠5+∠4=∠4+∠3,
∴∠5=∠3,且∠B+∠CEA=180°,
又∠7+∠CEA=180°,
∴∠B=∠7,
在△ABC和△DEC中 ,
∴△ABC≌△DEC(ASA).
22、2,1
【解析】
根据题意得出不等式组,解不等式组求得其解集即可.
【详解】
根据题意得,
解不等式①,得:x≤1,
解不等式②,得:x>1,
则不等式组的解集为1<x≤1,
∴x可取的整数值是2,1.
【点睛】
本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.
23、 (1);(2)①2,②
【解析】
分析:(1)重合部分是等边三角形,计算出边长即可.
①证明:在图3中,取AB中点E,证明≌,即可得到
,
②由①知,在旋转过程60°中始终有≌四边形的面积等于 =.
详解:(1)∵四边形为菱形,
∴
∴为等边三角形
∴
∵AD//
∴
∴为等边三角形,边长
∴重合部分的面积:
①证明:在图3中,取AB中点E,
由上题知,
∴
又∵
∴≌,
∴
∴,
②由①知,在旋转过程60°中始终有≌
∴四边形的面积等于=.
点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.
24、a-b
【解析】
利用分式的基本性质化简即可.
【详解】
===.
【点睛】
此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
2024年福建省漳州市中考数学一模试卷(含解析): 这是一份2024年福建省漳州市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年福建省漳州市中考数学二检试卷(含解析): 这是一份2023年福建省漳州市中考数学二检试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年福建省漳州市中考数学专项突破仿真模拟试卷(一模二模)含解析: 这是一份2022-2023学年福建省漳州市中考数学专项突破仿真模拟试卷(一模二模)含解析,共50页。试卷主要包含了选一选,填 空 题等内容,欢迎下载使用。