搜索
    上传资料 赚现金
    高中数学人教B版必修第一册(2019) 教学设计_ 方程组的解集2
    立即下载
    加入资料篮
    高中数学人教B版必修第一册(2019) 教学设计_ 方程组的解集201
    高中数学人教B版必修第一册(2019) 教学设计_ 方程组的解集202
    高中数学人教B版必修第一册(2019) 教学设计_ 方程组的解集203
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教B版 (2019)必修 第一册2.1.3 方程组的解集教学设计及反思

    展开
    这是一份高中数学人教B版 (2019)必修 第一册2.1.3 方程组的解集教学设计及反思,共6页。教案主要包含了整体概述,探索新知,初步应用,归纳小结,布置作业等内容,欢迎下载使用。

    第二章 等式与不等式

    《2.1.3 方程组的解集》教学设计

    教学目标

    1.掌握解方程组的方法.

    2.判断方程组解集是有限集还是无限集

    3.解读古代数学语境,能正确列出方程组.

    教学重难点

    教学重点:1.用消元法解方程组

    2.判断方程组是有限集还是无限集

    3特定的语境中能正确列出方程组.

    教学难点:在应用题中正确解读语境,能够列出题目要求的方程组.
    课前准备

    PPT课件.

    教学过程

    一、整体概述

    问题1阅读课本第51~54页,回答下列问题:

    (1)本节将要研究哪类问题?

    (2)本节研究的起点是什么?目标是什么?

    师生活动:学生带着问题阅读课本,并在本节课中回答相应问题.

    预设的答案:(1)本节将要研究方程组的解集.(2)起点是二元一次方程的解集,目标是会用消元法求解二元一次方程组、三元一次方程组以及二元二次方程组提升数学运算素养.

    设计意图:通过阅读读本,让学生明晰本阶段的学习目标,初步搭建学习内容的框架

    二、探索新知

    1.情境与问题

    《九章算术》第八章“方程”问题一:今有上禾田三来⑧,中禾二秉,下禾一来,实三十九斗⑤;上禾二乘,中禾三来,下禾一乘,实三十四斗;上禾一乘,中禾二秉,下禾三乘,实二十六斗.问上、中、下禾实一乘各几何.请列方程组求解这个问题.

    设计意图:以古代名题创设情境,既让学生了解中国古代数学史,激发学生的爱国情怀,又激发学生学习数学的兴趣.

    2.探究新知

    知识点1  方程组的解集

    问题1:为了更好地解决上述问题,我们先来研究以下问题:将xy=1看成含有两个未知数xy的方程:

    (1)判断(xy)=(3,2)(指的是下同)是否是这个方程的解;

    (2)判断这个方程的解集是有限集还是无限集.

    师生活动:学生回答:因为3-2=1,所以(xy)=(3,2)是方程xy=1的解.教师与学生一起讨论,只要给定一个xy的值,随之可得相应的yx的值,进而得到方程的一个解,所以方程xy=1的解集是无限集.

    【想一想】二元一次方程的解集都是无限集吗?

    师生活动:学生回答!

    预设的答案:是!

    问题2:在刚才二元一次方程的基础上再增加一个方程,如何求方程组的解集?解集是有限集还是无限集.

    师生活动:学生回答:是一个方程组,而且通过①+②可以消去y,得到x=2;②一①可以消去x,得到y=1,从而得出这个方程组的解为(xy)=(2,1).

    教师总结:一般地,将多个方程联立,就能得到方程组.方程组中,由每个方程的解集得到的交集称为这个方程组的解集.因此,方程组 的解集是{(xy)| xy=1 } ∩ {(xy)| x+y=3 }={(2,1)}.

    由上可以看出,求方程组解集的过程要不断应用等式的性质,常用的方法是以前学过的消元法(消元的方法有代入消元法与加减消元法).

    【想一想】一般情况下,二元一次方程组的解集是单元素集合,那么二元一次方程组的解集都是单元素集合吗?

    师生活动:学生讨论,派代表回答!如二元一次方程组的解集为空集;二元一次方程组的解集为无限集.

    预设的答案:不是!

    问题3:如何求解情境与问题中的实际应用问题?

    师生活动:学生互相讨论,并请一代表回答:

    设上禾实一秉x斗,中禾实一秉y斗,下禾实一秉z斗,根据题意,可列方程组

    由此可解得这个方程组的解集为

    教师总结:解三元一次方程组的基本步骤:(1)观察方程组中每个方程的特点,确定消去的未知数;(2)利用加减消元法或代入消元法,消去一个未知数,得到二元一次方程组;(3)解二元一次方程组,求出两个未知数的值;(4)将所得的两个未知数的值代入原三元一次方程组中的某个方程,求出第三个未知数的值;(5)写出三元一次方程组的解.

    【想一想】如果是三个未知时两个方程,如何求解集呢?如:设方程组的解集为A.判断(xyz)=(3,2,0)和(xyz)=(4,4,1)是否是集合A中的元素;判断A是一个有限集还是一个无限集

    师生活动:学生回答:xyz)=(3,2,0)和(xyz)=(4,4,1)均为上述方程组的解.师生一起探讨:如果我们将z看成已知数,就可以解得x= z +3,y=2 z +2.

    这样一来,方程组的解集可以写成A={(xyz)|x= z +3,y=2 z +2,zR).

    不难看出,这个集合含有无限多个元素,是一个无限集.

    教师总结:当方程组中未知数的个数大于方程的个数时,方程组的解集可能含有无穷多个元素,此时,如果将其中一些未知数看成常数,那么其他未知数往往能用这些未知数表示出来.

    设计意图:层层递进 ,让学生熟悉和理解二元一次方程、二元一次方程组、三元一次方程组的求解方法以及解集是有限集还是元限集. 

    三、初步应用

    例1 今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.分别求出该市今年外来和外出旅游的人数.

    师生活动:学生思考分析,派代表发言:根据等量关系“去年外来旅游的人数-去年外出旅游的人数=20万人”和“今年外来旅游的人数+今年外出旅游的人数=226万人”列方程组求解.教师写出规范解答.

    预设的答案:解:设去年同期外来旅游的人数为x万人,外出旅游的人数为y万人.

    由题意得

    解这个方程组,得

    所以(1+30%x=130,(1+20%y=96.

    故该市今年外来和外出旅游的人数分别是130万人和96万人.

    方程组应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、列方程组来加以解决.

    教师总结:列方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知量和未知量,并用字母表示其中的两个未知数;(2)找:找出题目中的两个相等关系;(3)列:根据这两个相等关系列出代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.

    设计意图:数学来源于生活,又作用于生活!通过本题说明如何求解实际应用问题.

    2  求方程组的解集.

    师生活动:师生一起来认识这个方程组,探讨求解方法.教师写出规范解题过程.

    预设的答案:解:将②代入①,整理得x2+x-2=0,解得x=1或x=-2.

    利用②可知,x=1时,y=2;x=-2时,y=-1.

    所以原方程组的解集为{(1,2),(-2,-1)}.

    设计意图:通过本题说明如何用代入消元法求一个是二元一次方程与一个二元二次方程组成的二元二次方程组的解集.

    3 求方程组    的解集.

    师生活动:师生一起来认识这个方程组,观察方程组中两个方程之间的联系,给出消元的方案. 教师写出规范解题过程.

    预设的答案:解:①-②,整理得

    x+2y-3=0.③

    解得x=3-2y代人①,并整理5y2-12y+7=0,解得

            y=1或  

    利用③可知,y=1时,x=1; 时,

    因此,原方程组的解集为

    设计意图:通过本题说明如何用化归法求解一类二元二次方程组的解集:两个都是二元二次的方程组成的二元二次方程组,首先通过加减消元转化为例1的类型,进而再用代入消元法将方程组求解问题转化为一元二次方程的求解问题.

    练习:教科书P54练习A1、2、3、4、5

    四、归纳小结,布置作业

    1.板书设计:

    2.1.3方程组的解集

    1.方程组的解集

    二元一次方程的解集

    二元一次方程组的解集

    三元一次方程的解集

    二元二次方程的解集

    例1

    例2

    例3

    2.总结概括:

    回顾本节课,你有什么收获?

    (1)二元一次方程的解集

    (2)二元一次方程组的解集

    (3)三元一次方程组的解集

    (4)二元二次方程组的解集

    师生活动:学生总结,老师适当补充.

    作业:教科书P55练习B 1、2、3、4、5

    【拓展阅读】

    《九章算术》中的代数成就简介

    《九章算术》是中国古典数学最重要的著作,全书分为九章,共246个问题,包含了算术、代数、几何等多方面的成就,代数方面,《九章算术》的第八章为“方程”,但指的是一次方程组,情境与问题中的题是其中的第一个问题.《九章算术》给出了解这个问题的“方程术”,其实质是将方程中未知数的系数与最后的常数项排成长方形的形式,然后采用“遍乘直除”的算法来解,过程可表示如下.

    3 2 1 39  3 2 1 39  3 2 1 39  4 0 0 37

    2 3 1 34  0 5 1 24  0 5 1 24  0 4 0 17

    1 2 3 26  0 4 8 39  0 0 4 11  0 0 4 11

    其中第一步是将第二行的数乘以3,然后不断地减去第一行,直到第一个数变为0为止,然后对第三行做同样的操作,其余的步骤都类似.

    不难看出,“遍乘直除”的目的在于消元.按照我国著名数学史学家李文林先生的说法,《九章算术》的方程术,是世界数学史上的一颗明珠.

    《九章算术》在代数方面的另一项成就是引进了负数,在用“方程术”解方程组时,可能出现减数大于被减数的情形,为此,《九章算术》给出了“正负术”,即正负数的加减运算法则.

    另外,“开方术”也是《九章算术》的代数成就之一,其实质是给出了一元二次方程ax2+bx+c=0(a0)的数值求解步骤.

    而且,“开方术”中还提到:若开之不尽者,为不可开.这是意识到了无理数的存在.你知道其他地区类似的代数成就出现的时间吗?感兴趣的同学请查阅有关书籍或网络进行了解吧!

    相关教案

    人教B版(2019)高中数学 必修第一册2.1.3 方程组的解集 教案: 这是一份人教B版(2019)高中数学 必修第一册2.1.3 方程组的解集 教案,共5页。教案主要包含了复习回顾,讲授新课,归纳总结等内容,欢迎下载使用。

    高中数学人教B版 (2019)必修 第一册第二章 等式与不等式2.1 等式2.1.2 一元二次方程的解集及其根与系数的关系教学设计: 这是一份高中数学人教B版 (2019)必修 第一册第二章 等式与不等式2.1 等式2.1.2 一元二次方程的解集及其根与系数的关系教学设计,共4页。

    2021学年2.1.1 等式的性质与方程的解集教学设计: 这是一份2021学年2.1.1 等式的性质与方程的解集教学设计,共7页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map