|试卷下载
搜索
    上传资料 赚现金
    贵州省毕节市三年(2020-2022)年中考数学真题汇编-02选择题基础题、中档题知识点分类
    立即下载
    加入资料篮
    贵州省毕节市三年(2020-2022)年中考数学真题汇编-02选择题基础题、中档题知识点分类01
    贵州省毕节市三年(2020-2022)年中考数学真题汇编-02选择题基础题、中档题知识点分类02
    贵州省毕节市三年(2020-2022)年中考数学真题汇编-02选择题基础题、中档题知识点分类03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省毕节市三年(2020-2022)年中考数学真题汇编-02选择题基础题、中档题知识点分类

    展开
    这是一份贵州省毕节市三年(2020-2022)年中考数学真题汇编-02选择题基础题、中档题知识点分类,共23页。试卷主要包含了小明解分式方程=﹣1的过程如下等内容,欢迎下载使用。

    贵州省毕节市三年(2020-2022)年中考数学真题汇编-02选择题基础题、中档题知识点分类
    一.一元一次方程的应用
    1.(2020•毕节市)由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为(  )
    A.230元 B.250元 C.270元 D.300元
    二.由实际问题抽象出二元一次方程组
    2.(2021•毕节市)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是(  )
    A. B.
    C. D.
    三.根的判别式
    3.(2021•毕节市)已知关于x的一元二次方程ax2﹣4x﹣1=0有两个不相等的实数根,则a的取值范围是(  )
    A.a≥﹣4 B.a>﹣4 C.a≥﹣4且a≠0 D.a>﹣4且a≠0
    四.解分式方程
    4.(2022•毕节市)小明解分式方程=﹣1的过程如下.
    解:去分母,得3=2x﹣(3x+3).①
    去括号,得3=2x﹣3x+3.②
    移项、合并同类项,得﹣x=6.③
    化系数为1,得x=﹣6.④
    以上步骤中,开始出错的一步是(  )
    A.① B.② C.③ D.④
    五.一次函数的应用
    5.(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是(  )

    A.汽车在高速路上行驶了2.5h
    B.汽车在高速路上行驶的路程是180km
    C.汽车在高速路上行驶的平均速度是72km/h
    D.汽车在乡村道路上行驶的平均速度是40km/h
    六.二次函数图象与系数的关系
    6.(2022•毕节市)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
    ①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.
    其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    7.(2021•毕节市)如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是(  )

    A.abc>0 B.b2>4ac C.4a+2b+c>0 D.2a+b=0
    七.图象法求一元二次方程的近似根
    8.(2020•毕节市)已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是(  )

    A.x1+x2<0 B.4<x2<5 C.b2﹣4ac<0 D.ab>0
    八.平行线的性质
    9.(2020•毕节市)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于
    (  )

    A.70° B.75° C.80° D.85°
    九.三角形三边关系
    10.(2022•毕节市)如果一个三角形的两边长分别为3,7,则第三边的长可以是(  )
    A.3 B.4 C.7 D.10
    一十.三角形的外角性质
    11.(2021•毕节市)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为(  )

    A.70° B.75° C.80° D.85°
    一十一.全等三角形的判定与性质
    12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于(  )

    A.a B.b C. D.c
    一十二.等腰三角形的性质
    13.(2020•毕节市)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为(  )
    A.13 B.17 C.13或17 D.13或10
    一十三.多边形内角与外角
    14.(2021•毕节市)若正多边形的一个外角是45°,则该正多边形的内角和为(  )
    A.540° B.720° C.900° D.1080°
    一十四.矩形的性质
    15.(2020•毕节市)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是(  )

    A.2.2cm B.2.3cm C.2.4cm D.2.5cm
    一十五.梯形
    16.(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为(  )

    A.6m B.8m C.4m D.8m
    一十六.弧长的计算
    17.(2021•毕节市)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为(  )

    A.8πm B.4πm C.πm D.πm
    一十七.扇形面积的计算
    18.(2020•毕节市)如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为(  )

    A.π B.π C.π D.π+
    19.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是(  )

    A.375πcm2 B.450πcm2 C.600πcm2 D.750πcm2
    一十八.作图—基本作图
    20.(2022•毕节市)在△ABC中,用尺规作图,分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N.作直线MN交AC于点D,交BC于点E,连接AE.则下列结论不一定正确的是(  )

    A.AB=AE B.AD=CD C.AE=CE D.∠ADE=∠CDE
    一十九.翻折变换(折叠问题)
    21.(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是(  )

    A.3 B. C. D.
    22.(2021•毕节市)如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是(  )

    A.4 B.5 C.6 D.2
    二十.解直角三角形的应用-坡度坡角问题
    23.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为(  )

    A.10m B.10m C.5m D.5m
    二十一.众数
    24.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:
    投中次数
    3
    5
    6
    7
    8
    9
    人数
    1
    3
    2
    2
    1
    1
    则这10名队员投中次数组成的一组数据中,众数和中位数分别为(  )
    A.5,6 B.2,6 C.5,5 D.6,5

    参考答案与试题解析
    一.一元一次方程的应用
    1.(2020•毕节市)由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为(  )
    A.230元 B.250元 C.270元 D.300元
    【解答】解:设该商品的原售价为x元,
    根据题意得:75%x+25=90%x﹣20,
    解得:x=300,
    则该商品的原售价为300元.
    故选:D.
    二.由实际问题抽象出二元一次方程组
    2.(2021•毕节市)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是(  )
    A. B.
    C. D.
    【解答】解:设甲需带钱x,乙带钱y,
    根据“甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50”,得,
    故选:A.
    三.根的判别式
    3.(2021•毕节市)已知关于x的一元二次方程ax2﹣4x﹣1=0有两个不相等的实数根,则a的取值范围是(  )
    A.a≥﹣4 B.a>﹣4 C.a≥﹣4且a≠0 D.a>﹣4且a≠0
    【解答】解:根据题意得a≠0且Δ=(﹣4)2﹣4a×(﹣1)>0,
    解得a>﹣4且a≠0,
    故选:D.
    四.解分式方程
    4.(2022•毕节市)小明解分式方程=﹣1的过程如下.
    解:去分母,得3=2x﹣(3x+3).①
    去括号,得3=2x﹣3x+3.②
    移项、合并同类项,得﹣x=6.③
    化系数为1,得x=﹣6.④
    以上步骤中,开始出错的一步是(  )
    A.① B.② C.③ D.④
    【解答】解:去分母得:3=2x﹣(3x+3)①,
    去括号得:3=2x﹣3x﹣3②,
    ∴开始出错的一步是②,
    故选:B.
    五.一次函数的应用
    5.(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是(  )

    A.汽车在高速路上行驶了2.5h
    B.汽车在高速路上行驶的路程是180km
    C.汽车在高速路上行驶的平均速度是72km/h
    D.汽车在乡村道路上行驶的平均速度是40km/h
    【解答】解:∵3.5h到达目的地,在乡村道路上行驶1h,
    ∴汽车下高速公路的时间是2.5h,
    ∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;
    由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;
    汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;
    汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意;
    故选:D.
    六.二次函数图象与系数的关系
    6.(2022•毕节市)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
    ①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.
    其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:∵图象开口向下,
    ∴a<0,
    ∵对称轴为直线x=﹣=1,
    ∴b=﹣2a>0,
    ∵图象与y轴的交点在x轴的上方,
    ∴c>0,
    ∴abc<0,
    ∴①说法错误,
    ∵﹣=1,
    ∴2a=﹣b,
    ∴2a+b=0,
    ∴②说法错误,
    由图象可知点(﹣1,0)的对称点为(3,0),
    ∵当x=﹣1时,y<0,
    ∴当x=3时,y<0,
    ∴9a+3b+c<0,
    ∴③说法错误,
    ∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    ∴b2>4ac,
    ∴④说法正确;
    当x=﹣1时,y<0,
    ∴a﹣b+c<0,
    ∴a+c<b,
    ∴⑤说法正确,
    ∴正确的为④⑤,
    故选:B.
    7.(2021•毕节市)如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是(  )

    A.abc>0 B.b2>4ac C.4a+2b+c>0 D.2a+b=0
    【解答】解:由图象可得,抛物线开口向上,故a>0,
    由于抛物线与y轴交点坐标为(0,c),
    由图象可得,c<0,
    对称轴为x=,
    ∴,
    ∴b=﹣2a,
    ∵a>0,
    ∴b<0,
    ∴abc>0,
    故A选项正确;
    ∵抛物线与x轴有两个交点,
    ∴Δ=b2﹣4ac>0,
    ∴b2>4ac,
    故B选项正确;
    由图象可得,当x=2时,y<0,
    ∴4a+2b+c<0,
    故C选项错误;
    ∵抛物线的对称轴为x=1,
    ∴,
    ∴2a+b=0,
    故D选项正确,
    故选:C.
    七.图象法求一元二次方程的近似根
    8.(2020•毕节市)已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是(  )

    A.x1+x2<0 B.4<x2<5 C.b2﹣4ac<0 D.ab>0
    【解答】解:∵x1,x2是一元二次方程ax2+bx+c=0的两个根,
    ∴x1、x2是抛物线与x轴交点的横坐标,
    ∵抛物线的对称轴为直线x=2,
    ∴=2,即x1+x2=4>0,故选项A错误;
    ∵x1<x2,﹣1<x1<0,
    ∴﹣1<4﹣x2<0,
    解得:4<x2<5,故选项B正确;
    ∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,故选项C错误;
    ∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴为直线x=2,
    ∴﹣=2,
    ∴b=﹣4a>0,
    ∴ab<0,故选项D错误;
    故选:B.
    八.平行线的性质
    9.(2020•毕节市)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于
    (  )

    A.70° B.75° C.80° D.85°
    【解答】解:如图所示,CB与FD交点为G,
    ∵EF∥BC,
    ∴∠F=∠BGD=45°,
    又∵∠ADG是△BDG的外角,∠B=30°,
    ∴∠ADG=∠B+∠BGD=30°+45°=75°,
    故选:B.

    九.三角形三边关系
    10.(2022•毕节市)如果一个三角形的两边长分别为3,7,则第三边的长可以是(  )
    A.3 B.4 C.7 D.10
    【解答】解:设第三边为x,则4<x<10,
    所以符合条件的整数为7,
    故选:C.
    一十.三角形的外角性质
    11.(2021•毕节市)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为(  )

    A.70° B.75° C.80° D.85°
    【解答】解:如图,

    ∵∠2=90°﹣30°=60°,
    ∴∠3=180°﹣45°﹣60°=75°,
    ∵a∥b,
    ∴∠1=∠3=75°,
    故选:B.
    一十一.全等三角形的判定与性质
    12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于(  )

    A.a B.b C. D.c
    【解答】解:过点C作CE⊥AD于E,如图所示:
    则四边形ABCE是矩形,
    ∴AB=CE,∠CED=∠DAP=90°,
    ∵∠BPC=45°,∠APD=75°,
    ∴∠CPD=180°﹣45°﹣75°=60°,
    ∵CP=DP=a,
    ∴△CPD是等边三角形,
    ∴CD=DP,∠PDC=60°,
    ∵∠ADP=90°﹣75°=15°,
    ∴∠EDC=15°+60°=75°,
    ∴∠EDC=∠APD,
    在△EDC和△APD中,

    ∴△EDC≌△APD(AAS),
    ∴CE=AD,
    ∴AB=AD=c,
    故选:D.

    一十二.等腰三角形的性质
    13.(2020•毕节市)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为(  )
    A.13 B.17 C.13或17 D.13或10
    【解答】解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.
    ②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.
    故选:B.
    一十三.多边形内角与外角
    14.(2021•毕节市)若正多边形的一个外角是45°,则该正多边形的内角和为(  )
    A.540° B.720° C.900° D.1080°
    【解答】解:正多边形的边数为:360°÷45°=8,
    ∴这个多边形是正八边形,
    ∴该多边形的内角和为(8﹣2)×180°=1080°.
    故选:D.
    一十四.矩形的性质
    15.(2020•毕节市)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是(  )

    A.2.2cm B.2.3cm C.2.4cm D.2.5cm
    【解答】解:∵四边形ABCD是矩形,
    ∴∠ABC=90°,BD=AC,BO=OD,
    ∵AB=6cm,BC=8cm,
    ∴由勾股定理得:AC===10(cm),
    ∴BD=10cm,DO=5cm,
    ∵点E、F分别是AO、AD的中点,
    ∴EF是△AOD的中位线,
    ∴EF=OD=2.5cm,
    故选:D.
    一十五.梯形
    16.(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为(  )

    A.6m B.8m C.4m D.8m
    【解答】解:过A作AE⊥BC于E,过D作DF⊥BC于F,
    ∴AE∥DF,
    ∵AD∥BC,
    ∴AE=DF,
    在Rt△ABE中,
    AE=ABsin45°=4,
    在Rt△DCF中,
    ∵∠DCB=30°,
    ∴DF=CD,
    ∴CD=2DF=2×4=8,
    故选:B.

    一十六.弧长的计算
    17.(2021•毕节市)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为(  )

    A.8πm B.4πm C.πm D.πm
    【解答】解:∵OC=12m,AC=4m,
    ∴OA=OC+AC=12+4=16(m),
    ∵∠AOB=120°,
    ∴弯道外边缘的长为:=(m),
    故选:C.
    一十七.扇形面积的计算
    18.(2020•毕节市)如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为(  )

    A.π B.π C.π D.π+
    【解答】解:连接CD、OC、OD.
    ∵C,D是以AB为直径的半圆的三等分点,
    ∴∠AOC=∠COD=∠DOB=60°,AC=CD,
    又∵OA=OC=OD,
    ∴△OAC、△OCD是等边三角形,
    ∴∠AOC=∠OCD,
    ∴CD∥AB,
    ∴S△ACD=S△OCD,
    ∵弧CD的长为,
    ∴=,
    解得:r=1,
    ∴S阴影=S扇形OCD==.
    故选:A.

    19.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是(  )

    A.375πcm2 B.450πcm2 C.600πcm2 D.750πcm2
    【解答】解:∵AB的长是45cm,扇面BD的长为30cm,
    ∴AD=AB﹣BD=15cm,
    ∵∠BAC=120°,
    ∴扇面的面积S=S扇形BAC﹣S扇形DAE
    =﹣
    =600π(cm2),
    故选:C.
    一十八.作图—基本作图
    20.(2022•毕节市)在△ABC中,用尺规作图,分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N.作直线MN交AC于点D,交BC于点E,连接AE.则下列结论不一定正确的是(  )

    A.AB=AE B.AD=CD C.AE=CE D.∠ADE=∠CDE
    【解答】解:由作图可知,MN垂直平分线段AC,
    ∴AD=DC,EA=EC,∠ADE=∠CDE=90°,
    故选项B,C,D正确,
    故选:A.
    一十九.翻折变换(折叠问题)
    21.(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是(  )

    A.3 B. C. D.
    【解答】解:连接BF,交AE于O点,

    ∵将△ABE沿AE折叠得到△AFE,
    ∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,
    ∵点E为BC的中点,
    ∴BE=CE=EF=3,
    ∴∠EFC=∠ECF,
    ∵∠BEF=∠ECF+∠EFC,
    ∴∠AEB=∠ECF,
    ∴AE∥CF,
    ∴∠BFC=∠BOE=90°,
    在Rt△ABE中,由勾股定理得,AE==,
    ∴BO==,
    ∴BF=2BO=,
    在Rt△BCF中,由勾股定理得,
    CF===,
    故选:D.
    22.(2021•毕节市)如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是(  )

    A.4 B.5 C.6 D.2
    【解答】解法一:解:连接PM,如图,
    设AP=x,
    ∵AB=7,CM=2,
    ∴PB=7﹣x,BM=BC﹣CM=7,
    由折叠性质可知,
    CD=PC′=7,CM=C′M=2,
    在Rt△PBM中,
    PB2+BM2=PM2,
    PM2=(7﹣x)2+72,
    在Rt△PC′M中,
    C′P2+C′M2=PM2,
    PM2=72+22,
    ∴(7﹣x)2+72=72+22,
    解得:x1=5,x2=9(舍去),
    ∴AP=5.
    解法二:解:连接PM,如图,
    ∵AB=7,CM=2,
    ∴BM=BC﹣CM=7,
    由折叠性质得,CD=PC′=7,∠C=∠PC′M=∠PBM=90°,C′M=CM=2,
    在Rt△PBM和Rt△MC′P中,

    ∴Rt△PBM≌Rt△MC′P(HL),
    ∴PB=C′M=2,
    ∴PA=AB﹣PB=5.
    故选:B.

    二十.解直角三角形的应用-坡度坡角问题
    23.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为(  )

    A.10m B.10m C.5m D.5m
    【解答】解:∵坡面AB的坡度为==1:,
    ∴AC=5m,
    ∴AB==10m.
    故选:A.
    二十一.众数
    24.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:
    投中次数
    3
    5
    6
    7
    8
    9
    人数
    1
    3
    2
    2
    1
    1
    则这10名队员投中次数组成的一组数据中,众数和中位数分别为(  )
    A.5,6 B.2,6 C.5,5 D.6,5
    【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5,
    ∵从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6,
    ∴这组数据的中位数为=6,
    故选:A.
    相关试卷

    重庆市三年(2020-2022)中考数学真题分类汇编-02选择题基础题: 这是一份重庆市三年(2020-2022)中考数学真题分类汇编-02选择题基础题,共22页。

    江苏省2022中考数学真题分类汇编-02选择题基础题、中档题知识点分类: 这是一份江苏省2022中考数学真题分类汇编-02选择题基础题、中档题知识点分类,共29页。

    贵州省毕节市三年(2020-2022)年中考数学真题汇编-04解答题基础题知识点分类: 这是一份贵州省毕节市三年(2020-2022)年中考数学真题汇编-04解答题基础题知识点分类,共10页。试卷主要包含了﹣1﹣,÷,其中x=1+,,其中a=﹣2,,其中a=2,b=1,与≤都成立?等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map