2021-2022学年四川省遂宁市大英县中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326
2.下列计算正确的是( )
A. += B.﹣= C.×=6 D.=4
3.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为( )
A.50m B.25m C.(50﹣)m D.(50﹣25)m
4.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
5.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是
A. B. C. D.
6.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是( )
A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
7.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )
A. B. C. D.
8.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为( )
A.2 B.4 C.2 D.4
9.下列图形中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
10.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
A.8 B.10 C.21 D.22
二、填空题(共7小题,每小题3分,满分21分)
11.已知关于x的方程x2+mx+4=0有两个相等的实数根,则实数m的值是______.
12.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
13.二次函数的图象如图,若一元二次方程有实数根,则 的最大值为___
14.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.
15.计算﹣的结果为_____.
16.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.
17.如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.
三、解答题(共7小题,满分69分)
18.(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;
(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;
(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; .
19.(5分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).
(1)求抛物线的解析式;
(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;
(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.
20.(8分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
求证:是⊙的切线;若,且,求⊙的半径与线段的长.
21.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:
(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
22.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
23.(12分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.
24.(14分)(5分)计算:.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
故选:C.
点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
2、B
【解析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.
【详解】
解:A、与不能合并,所以A选项不正确;
B、-=2−=,所以B选项正确;
C、×=,所以C选项不正确;
D、=÷=2÷=2,所以D选项不正确.
故选B.
【点睛】
此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.
3、C
【解析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
【详解】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
则AB=MN,AM=BN.
在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
则AB=MN=(50﹣)m.
故选C.
【点睛】
本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
4、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
5、B
【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
【详解】
添加,根据AAS能证明≌,故A选项不符合题意.
B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;
C.添加,可得,根据AAS能证明≌,故C选项不符合题意;
D.添加,可得,根据AAS能证明≌,故D选项不符合题意,
故选B.
【点睛】
本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
6、C
【解析】
∵∠C=90°,
∴cosA=,sinA= ,tanA=,cotA=,
∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
∴只有选项C正确,
故选C.
【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
7、A
【解析】
根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
【详解】
解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
∴二元一次方程组的解为
故选A.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
8、C
【解析】
根据等腰三角形的性质和勾股定理解答即可.
【详解】
解:∵点A,D分别对应数轴上的实数﹣2,2,
∴AD=4,
∵等腰△ABC的底边BC与底边上的高AD相等,
∴BC=4,
∴CD=2,
在Rt△ACD中,AC=,
故选:C.
【点睛】
此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
9、B
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
解:A、是轴对称图形,也是中心对称图形,故错误;
B、是中心对称图形,不是轴对称图形,故正确;
C、是轴对称图形,也是中心对称图形,故错误;
D、是轴对称图形,也是中心对称图形,故错误.
故选B.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
10、D
【解析】
分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
故选D.
点睛:考查中位数的定义,看懂条形统计图是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、±4
【解析】
分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值.
详解:∵方程有两个相等的实数根,
∴
解得:
故答案为
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
12、3:2
【解析】
因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为: 3:2.
13、3
【解析】
试题解析::∵抛物线的开口向上,顶点纵坐标为-3,
∴a>1.
-=-3,即b2=12a,
∵一元二次方程ax2+bx+m=1有实数根,
∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,
∴m的最大值为3,
14、1或5.
【解析】
小正方形的高不变,根据面积即可求出小正方形平移的距离.
【详解】
解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,
①如图,小正方形平移距离为1厘米;
②如图,小正方形平移距离为4+1=5厘米.
故答案为1或5,
【点睛】
此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.
15、.
【解析】
根据同分母分式加减运算法则化简即可.
【详解】
原式=,
故答案为.
【点睛】
本题考查了分式的加减运算,熟记运算法则是解题的关键.
16、1
【解析】
根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
【详解】
根据题意,作△EFC,
树高为CD,且∠ECF=90°,ED=3,FD=12,
易得:Rt△EDC∽Rt△DCF,
有,即DC2=ED×FD,
代入数据可得DC2=31,
DC=1,
故答案为1.
17、10
【解析】
根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.
【详解】
∵翻折,∴,,
又∵,
∴,
∴.设,则.
在中,,即,
解得,
∴,
∴.
【点睛】
此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)AE=BF,(3)AE=BF;
【解析】
(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);
【详解】
(1)证明:
∵四边形ABCD是正方形,
∴∠ABC=∠C,AB=BC.
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴AE=BF;
(2)解:如图2中,结论:AE=BF,
理由:∵四边形ABCD是矩形,
∴∠ABC=∠C,
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF,
∴△ABE∽△BCF,
∴,
∴AE=BF.
(3)结论:AE=BF.
理由:∵四边形ABCD是矩形,
∴∠ABC=∠C,
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF,
∴△ABE∽△BCF,
∴,
∴AE=BF.
【点睛】
本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.
19、 (1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-
【解析】
【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;
(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;
(3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P ,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).
【详解】(1)抛物线的解析式为y= (x-4)(x+2)=x2-x-4.
(2)连接OM,设点M的坐标为.
由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.
S四边形OAMC=S△OAM+S△OCM
=× 4m+× 4
=-m2+4m+8=-(m-2)2+12.
当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).
(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).
连接CC1,过C1作C1D⊥AC于D,则CC1=2.
∵OA=OC,∠AOC=90°,∠CDC1=90°,
∴AC=4,CD=C1D=,AD=4-=3,
设点P ,过P作PQ垂直于x轴,垂足为Q.
∵∠PAB=∠CAC1,∠AQP=∠ADC1,
∴△PAQ∽△C1AD,
∴,
即 ,化简得 =(8-2n),
即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),
解得n=-,或n=-,或n=4(舍去),
∴点P的横坐标为-或-.
【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.
20、(1)证明参见解析;(2)半径长为,=.
【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
【详解】
解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.
【点睛】
1.圆的切线的判定;2.锐角三角函数的应用.
21、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
【解析】
试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:
样本中的总人数为:36÷45%=80人;
开私家车的人数m=80×25%=20;
扇形统计图中“骑自行车”的圆心角为.
(2)求出骑自行车的人数,然后补全统计图即可.
(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.
试题解析:解:(1)80,20,72.
(2)骑自行车的人数为:80×20%=16人,
补全统计图如图所示;
(3)设原来开私家车的人中有x人改为骑自行车,
由题意得,,解得x≥50.
答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.
22、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
23、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤
【解析】
(1)直接利用线段AB的“等长点”的条件判断;
(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;
(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.
【详解】
(1)∵A(0,3),B(,0),
∴AB=2,
∵点C1(﹣2,3+2),
∴AC1==2,
∴AC1=AB,
∴C1是线段AB的“等长点”,
∵点C2(0,﹣2),
∴AC2=5,BC2==,
∴AC2≠AB,BC2≠AB,
∴C2不是线段AB的“等长点”,
∵点C3(3+,﹣),
∴BC3==2,
∴BC3=AB,
∴C3是线段AB的“等长点”;
故答案为C1,C3;
(2)如图1,
在Rt△AOB中,OA=3,OB=,
∴AB=2,tan∠OAB==,
∴∠OAB=30°,
当点D在y轴左侧时,
∵∠DAB=60°,
∴∠DAO=∠DAB﹣∠BAO=30°,
∵点D(m,n)是线段AB的“等长点”,
∴AD=AB,
∴D(﹣,0),
∴m=,n=0,
当点D在y轴右侧时,
∵∠DAB=60°,
∴∠DAO=∠BAO+∠DAB=90°,
∴n=3,
∵点D(m,n)是线段AB的“等长点”,
∴AD=AB=2,
∴m=2;
∴D(,3)
(3)如图2,
∵直线y=kx+3k=k(x+3),
∴直线y=kx+3k恒过一点P(﹣3,0),
∴在Rt△AOP中,OA=3,OP=3,
∴∠APO=30°,
∴∠PAO=60°,
∴∠BAP=90°,
当PF与⊙B相切时交y轴于F,
∴PA切⊙B于A,
∴点F就是直线y=kx+3k与⊙B的切点,
∴F(0,﹣3),
∴3k=﹣3,
∴k=﹣,
当直线y=kx+3k与⊙A相切时交y轴于G切点为E,
∴∠AEG=∠OPG=90°,
∴△AEG∽△POG,
∴,
∴=,解得:k=或k=(舍去)
∵直线y=kx+3k上至少存在一个线段AB的“等长点”,
∴﹣≤k≤,
【点睛】
此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.
24、.
【解析】
试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.
试题解析:原式==.
考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.
四川省遂宁市大英县2021-2022学年中考五模数学试题含解析: 这是一份四川省遂宁市大英县2021-2022学年中考五模数学试题含解析,共24页。试卷主要包含了下列运算正确的是,一、单选题等内容,欢迎下载使用。
四川省遂宁市大英县江平初中2022年中考数学全真模拟试题含解析: 这是一份四川省遂宁市大英县江平初中2022年中考数学全真模拟试题含解析,共22页。
四川省遂宁市大英县2022年中考三模数学试题含解析: 这是一份四川省遂宁市大英县2022年中考三模数学试题含解析,共26页。试卷主要包含了下列事件中为必然事件的是,在中,,,,则的值是,下列事件是确定事件的是,下列运算正确的是,对于一组统计数据等内容,欢迎下载使用。