|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年湖北省孝感市孝南区肖港镇肖港初级中学毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2021-2022学年湖北省孝感市孝南区肖港镇肖港初级中学毕业升学考试模拟卷数学卷含解析01
    2021-2022学年湖北省孝感市孝南区肖港镇肖港初级中学毕业升学考试模拟卷数学卷含解析02
    2021-2022学年湖北省孝感市孝南区肖港镇肖港初级中学毕业升学考试模拟卷数学卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省孝感市孝南区肖港镇肖港初级中学毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2021-2022学年湖北省孝感市孝南区肖港镇肖港初级中学毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了一、单选题,已知关于x的一元二次方程,若a+|a|=0,则等于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
    甲的路线为:A→C→B;
    乙的路线为:A→D→E→F→B,其中E为AB的中点;
    丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
    若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为(  )

    A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲
    2.下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    3.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是(  )
    A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣2
    4.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是(  )
    A.相交 B.相切 C.相离 D.不能确定
    5.一、单选题
    如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为(  )

    A.5 B.4 C.3 D.2
    6.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是(  )
    A.1一定不是关于x的方程x2+bx+a=0的根
    B.0一定不是关于x的方程x2+bx+a=0的根
    C.1和﹣1都是关于x的方程x2+bx+a=0的根
    D.1和﹣1不都是关于x的方程x2+bx+a=0的根
    7.若a+|a|=0,则等于(  )
    A.2﹣2a B.2a﹣2 C.﹣2 D.2
    8.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )

    A. B. C. D.
    9.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )

    A.60° B.65° C.70° D.75°
    10.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为(  )

    A.50m B.25m C.(50﹣)m D.(50﹣25)m
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
    12.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为 .

    13.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.

    14.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.
    15.一个正多边形的一个外角为30°,则它的内角和为_____.
    16.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.

    17.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).

    三、解答题(共7小题,满分69分)
    18.(10分)x取哪些整数值时,不等式5x+2>3(x-1)与x≤2-x都成立?
    19.(5分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
    求证:是⊙的切线;若,且,求⊙的半径与线段的长.
    20.(8分)计算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;
    21.(10分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.

    22.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
    23.(12分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
    (1)求双曲线解析式;
    (2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    24.(14分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.

    建立模型:(1)y与x的函数关系式为:,
    解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
    x
    0

    1

    1

    3

    4
    y
    0

       

       

       

    0
    (3)观察所画的图象,写出该函数的两条性质:   .



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
    详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
    ∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
    图3与图1中,三个三角形相似,所以 ====.
    ∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
    ∴甲=丙.∴甲=乙=丙.
    故选A.

    点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.
    2、A
    【解析】
    分析:根据中心对称的定义,结合所给图形即可作出判断.
    详解:A、是中心对称图形,故本选项正确;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误;
    故选:A.
    点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
    3、C
    【解析】
    分析:
    由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
    详解:
    ∵在中,﹣6<0,
    ∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
    ∵当x=﹣3时,y=2,当x=﹣2时,y=3,
    ∴当﹣3<x<﹣2时,2<y<3,
    故选C.
    点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
    4、A
    【解析】
    试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
    解:∵⊙O的半径为3,圆心O到直线L的距离为2,
    ∵3>2,即:d<r,
    ∴直线L与⊙O的位置关系是相交.
    故选A.
    考点:直线与圆的位置关系.
    5、B
    【解析】
    根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
    【详解】
    解:∵△ABC绕点A顺时针旋转 60°得到△AED,
    ∴AB=AE,∠BAE=60°,
    ∴△AEB是等边三角形,
    ∴BE=AB,
    ∵AB=1,
    ∴BE=1.
    故选B.
    【点睛】
    本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
    6、D
    【解析】
    根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根.
    【详解】
    ∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,
    ∴,
    ∴b=a+1或b=-(a+1).
    当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;
    当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.
    ∵a+1≠0,
    ∴a+1≠-(a+1),
    ∴1和-1不都是关于x的方程x2+bx+a=0的根.
    故选D.
    【点睛】
    本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
    7、A
    【解析】
    直接利用二次根式的性质化简得出答案.
    【详解】
    ∵a+|a|=0,
    ∴|a|=-a,
    则a≤0,
    故原式=2-a-a=2-2a.
    故选A.
    【点睛】
    此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
    8、D
    【解析】
    根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
    【详解】
    ∵二次函数图象开口方向向上,
    ∴a>0,
    ∵对称轴为直线
    ∴b<0,
    二次函数图形与轴有两个交点,则>0,
    ∵当x=1时y=a+b+c<0,
    ∴的图象经过第二四象限,且与y轴的正半轴相交,
    反比例函数图象在第二、四象限,
    只有D选项图象符合.
    故选:D.
    【点睛】
    考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
    9、C
    【解析】
    试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
    考点:切线的性质、三角形外角的性质、圆的基本性质.
    10、C
    【解析】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
    【详解】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
    则AB=MN,AM=BN.
    在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
    在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
    则AB=MN=(50﹣)m.
    故选C.

    【点睛】
    本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.

    二、填空题(共7小题,每小题3分,满分21分)
    11、上升的
    【解析】
    ∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
    ∴在y 轴右侧部分抛物线呈上升趋势.
    故答案为:上升的.
    【点睛】
    本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
    12、.
    【解析】
    试题分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO﹣OB=.

    考点:切线的性质;锐角三角函数.
    13、48°
    【解析】
    连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
    【详解】
    连接OA,

    ∵五边形ABCDE是正五边形,
    ∴∠AOB==72°,
    ∵△AMN是正三角形,
    ∴∠AOM==120°,
    ∴∠BOM=∠AOM-∠AOB=48°,
    故答案为48°.
    点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
    14、5
    【解析】
    根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.
    【详解】
    解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
    所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
    则=,解得x=3,
    所以另一段长为18-3=15,
    因为15÷3=5,所以是第5张.
    故答案为:5.
    【点睛】
    本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.
    15、1800°
    【解析】
    试题分析:这个正多边形的边数为=12,
    所以这个正多边形的内角和为(12﹣2)×180°=1800°.
    故答案为1800°.
    考点:多边形内角与外角.
    16、2
    【解析】
    由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=即可.
    【详解】
    由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3
    ∴圆心角∠AO2O1=60° ∴在Rt△ACO2中,AO2==2.
    故答案为2.
    【点睛】
    本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.
    17、
    【解析】
    解:∵∠ACB=30°,∠ADB=60°,
    ∴∠CAD=30°,
    ∴AD=CD=60m,
    在Rt△ABD中,
    AB=AD•sin∠ADB=60×=(m).
    故答案是:.

    三、解答题(共7小题,满分69分)
    18、-2,-1,0,1
    【解析】
    解不等式5x+2>3(x-1)得:得x>-2.5;
    解不等式x≤2-x得x≤1.则这两个不等式解集的公共部分为 ,
    因为x取整数,则x取-2,-1,0,1.
    故答案为-2,-1,0,1
    【点睛】
    本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).
    19、(1)证明参见解析;(2)半径长为,=.
    【解析】
    (1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
    【详解】
    解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.

    【点睛】
    1.圆的切线的判定;2.锐角三角函数的应用.
    20、1
    【解析】
    原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.
    【详解】
    原式=4-1+2-+=1.
    【点睛】
    此题考查了实数的运算,绝对值,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.
    21、(1)见解析;(2)⊙O直径的长是4.
    【解析】
    (1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
    (2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
    【详解】
    证明:(1)连接BD,交AC于F,

    ∵DC⊥BE,
    ∴∠BCD=∠DCE=90°,
    ∴BD是⊙O的直径,
    ∴∠DEC+∠CDE=90°,
    ∵∠DEC=∠BAC,
    ∴∠BAC+∠CDE=90°,
    ∵弧BC=弧BC,
    ∴∠BAC=∠BDC,
    ∴∠BDC+∠CDE=90°,
    ∴BD⊥DE,
    ∴DE是⊙O切线;
    解:(2)∵AC∥DE,BD⊥DE,
    ∴BD⊥AC.
    ∵BD是⊙O直径,
    ∴AF=CF,
    ∴AB=BC=8,
    ∵BD⊥DE,DC⊥BE,
    ∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
    ∴△BDC∽△BED,
    ∴=,
    ∴BD2=BC•BE=8×10=80,
    ∴BD=4.
    即⊙O直径的长是4.
    【点睛】
    此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
    22、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
    【解析】
    【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
    (2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
    【详解】(1)设第一批饮料进货单价为元,则:
    解得:
    经检验:是分式方程的解
    答:第一批饮料进货单价为8元.
    (2)设销售单价为元,则:

    化简得:,
    解得:,
    答:销售单价至少为11元.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
    23、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    24、 (1) ①y=;②;(1)见解析;(3)见解析
    【解析】
    (1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
    【详解】
    (1)设AP=x
    ①当0≤x≤1时
    ∵MN∥BD
    ∴△APM∽△AOD

    ∴MP=
    ∵AC垂直平分MN
    ∴PN=PM=x
    ∴MN=x
    ∴y=AP•MN=
    ②当1<x≤4时,P在线段OC上,
    ∴CP=4﹣x
    ∴△CPM∽△COD

    ∴PM=
    ∴MN=1PM=4﹣x
    ∴y==﹣
    ∴y=
    (1)由(1)
    当x=1时,y=
    当x=1时,y=1
    当x=3时,y=

    (3)根据(1)画出函数图象示意图可知
    1、当0≤x≤1时,y随x的增大而增大
    1、当1<x≤4时,y随x的增大而减小
    【点睛】
    本题考查函数,解题的关键是数形结合思想.

    相关试卷

    湖北省孝感市孝南区肖港镇肖港初级中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案: 这是一份湖北省孝感市孝南区肖港镇肖港初级中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共6页。试卷主要包含了在平面直角坐标系中,点P,如果两个相似三角形的面积比是1等内容,欢迎下载使用。

    湖北省孝感市孝南区肖港镇肖港初级中学2023-2024学年八年级数学第一学期期末联考模拟试题含答案: 这是一份湖北省孝感市孝南区肖港镇肖港初级中学2023-2024学年八年级数学第一学期期末联考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁, “对顶角相等”的逆命题是,下列各数中是无理数的是,如图,在中,过点作于,则的长是等内容,欢迎下载使用。

    湖北省孝感市孝南区肖港初级中学2023-2024学年八年级数学第一学期期末联考模拟试题含答案: 这是一份湖北省孝感市孝南区肖港初级中学2023-2024学年八年级数学第一学期期末联考模拟试题含答案,共6页。试卷主要包含了下列各数中,属于无理数的是,下列各数中,无理数是,要使分式有意义,则的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map