2021-2022学年湖北省武汉市武昌区省水二中学毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.化简÷的结果是( )
A. B. C. D.2(x+1)
2.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为( )
A. B. C. D.
3.有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种 B.2种 C.3种 D.4种
4.如图,在平行四边形ABCD中,都不一定 成立的是( )
①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.
A.①和④ B.②和③ C.③和④ D.②和④
5.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
6.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
7.在实数,有理数有( )
A.1个 B.2个 C.3个 D.4个
8.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
9.下列图形是轴对称图形的有( )
A.2个 B.3个 C.4个 D.5个
10.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是( )
A.90° B.60° C.45° D.30°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.
12.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
13.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为( )
A.144° B.84° C.74° D.54°
14.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
15.如果x+y=5,那么代数式的值是______.
16.若代数式有意义,则x的取值范围是__.
三、解答题(共8题,共72分)
17.(8分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.
(1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;
(2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?
18.(8分)解不等式组,并写出其所有的整数解.
19.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
(1)求每部型手机和型手机的销售利润;
(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
①求关于的函数关系式;
②该手机店购进型、型手机各多少部,才能使销售总利润最大?
(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
20.(8分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如图1所示,当α=60°时,求证:△DCE是等边三角形;
(2)如图2所示,当α=45°时,求证:=;
(3)如图3所示,当α为任意锐角时,请直接写出线段CE与DE的数量关系:=_____.
21.(8分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C.
(1)求点 A 的坐标;
(2)结合函数的图象,求当 y<0 时,x 的取值范围.
22.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.
23.(12分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)
24.学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
(1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
(2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
(3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
原式利用除法法则变形,约分即可得到结果.
【详解】
原式=•(x﹣1)=.
故选A.
【点睛】
本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.
2、A
【解析】
本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´
【详解】
先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=
【点睛】
熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.
3、B
【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
4、D
【解析】
∵四边形ABCD是平行四边形,
∴AO=CO,故①成立;
AD∥BC,故③成立;
利用排除法可得②与④不一定成立,
∵当四边形是菱形时,②和④成立.
故选D.
5、C
【解析】
①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
【详解】
:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,结论①错误;
②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤a≤-,结论②正确;
③∵a<0,顶点坐标为(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
又∵a<0,
∴抛物线开口向下,
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
故选C.
【点睛】
本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
6、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
7、D
【解析】
试题分析:根据有理数是有限小数或无限循环小数,可得答案:
是有理数,故选D.
考点:有理数.
8、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
9、C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
解:图(1)有一条对称轴,是轴对称图形,符合题意;
图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
图(3)有二条对称轴,是轴对称图形,符合题意;
图(3)有五条对称轴,是轴对称图形,符合题意;
图(3)有一条对称轴,是轴对称图形,符合题意.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
10、B
【解析】
首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.
【详解】
连接AB,
根据题意得:OB=OA=AB,
∴△AOB是等边三角形,
∴∠AOB=60°.
故答案选:B.
【点睛】
本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.1
【解析】
求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.
【详解】
∵DE=1,DC=3,
∴EC=3-1=2,
∵四边形ABCD是菱形,
∴AD∥BC,
∴△DEF∽△CEB,
∴,
∴,
∴DF=1.1,
故答案为1.1.
【点睛】
此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.
12、2
【解析】
试题分析:当x+3≥﹣x+1,
即:x≥﹣1时,y=x+3,
∴当x=﹣1时,ymin=2,
当x+3<﹣x+1,
即:x<﹣1时,y=﹣x+1,
∵x<﹣1,
∴﹣x>1,
∴﹣x+1>2,
∴y>2,
∴ymin=2,
13、B
【解析】
正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.
14、630
【解析】
分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
所以甲车从B地向A地行驶了120×2.25=270千米,
当乙车到达A地时,甲车离A地的距离为900-270=630千米.
点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
15、1
【解析】
先将分式化简,然后将x+y=1代入即可求出答案
【详解】
当x+y=1时,
原式
=x+y=1,
故答案为:1.
【点睛】
本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.
16、x3
【解析】
由代数式有意义,得
x-30,
解得x3,
故答案为: x3.
【点睛】
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.
三、解答题(共8题,共72分)
17、 (1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.
【解析】
(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;
(2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.
①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;
(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,然后讨论:x==3时和x=>3时两种情况m取值即可求解.
【详解】
解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,
解得:a=﹣360,b=101,
故答案为0,﹣360,101;
(2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,
∴当x=2时,Wmin=720;
②当x≥3时,W=90x2,
W随x最大而最大,
当x=3时,Wmin=810>720,
∴当距离为2公里时,配套工程费用最少;
(3)∵0≤x≤3,
W=mx2﹣360x+101,(m>0),其对称轴x=,
当x=≤3时,即:m≥60,
Wmin=m()2﹣360()+101,
∵Wmin≤675,解得:60≤m≤1;
当x=>3时,即m<60,
当x=3时,Wmin=9m<675,
解得:0<m<60,
故:0<m≤1.
【点睛】
本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.
18、不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.
【解析】
先求出不等式组的解集,即可求得该不等式组的整数解.
【详解】
由①得,x≥1,
由②得,x<2.
所以不等式组的解集为1≤x<2,
该不等式组的整数解为1,2,1.
【点睛】
本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
19、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
【解析】
(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
【详解】
解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
根据题意,得,
解得
答:每部型手机的销售利润为元,每部型手机的销售利润为元.
(2)①根据题意,得,即.
②根据题意,得,解得.
,,
随的增大而减小.
为正整数,
当时,取最大值,.
即手机店购进部型手机和部型手机的销售利润最大.
(3)根据题意,得.
即,.
①当时,随的增大而减小,
当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
③当时,,随的增大而增大,
当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
【点睛】
本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
20、1
【解析】
试题分析:(1)证明△CFD≌△DAE即可解决问题.
(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出=,再证明CF=AD即可.
(3)证明EC=ED即可解决问题.
试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.
(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四边形ADFG是矩形,FC=FG,∴FG=AD,CF=AD,∴=.
(3)解:如图3中,设AC与DE交于点O.
∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.
点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.
21、(1);(2)
【解析】
(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;
(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出.
【详解】
解:(1)当时,函数的值为-2,
∴点的坐标为
∵四边形为矩形,
解方程,得.
∴点的坐标为.
∴点的坐标为.
(2)解方程,得.
由图象可知,当时,的取值范围是.
【点睛】
本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.
22、
【解析】
试题分析:
由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.
试题解析:
∵四边形ABCD是矩形,
∴OA=OB=OD,∠BAD=90°,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴OB=OA=2,
∴BD=2OB=4,
在Rt△ABD中
∴AD===.
23、35km
【解析】
试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.
试题解析:如图,作CH⊥AD于H.设CH=xkm,
在Rt△ACH中,∠A=37°,∵tan37°=,
∴AH=,
在Rt△CEH中,∵∠CEH=45°,
∴CH=EH=x,
∵CH⊥AD,BD⊥AD,
∴CH∥BD,
∴,
∵AC=CB,
∴AH=HD,
∴=x+5,
∴x=≈15,
∴AE=AH+HE=+15≈35km,
∴E处距离港口A有35km.
24、(1)详见解析;(2)2+2;(3)S△BDQx+.
【解析】
(1)根据要求利用全等三角形的判定和性质画出图形即可.
(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.
(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.
【详解】
解:(1)如图1,作一边上的中线可分割成2个全等三角形,
如图2,连接外心和各顶点的线段可分割成3个全等三角形,
如图3,连接各边的中点可分割成4个全等三角形,
(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.
∵△ABC是等边三角形,O是外心,
∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
∴OE=OF,
∵∠OEB=∠OFB=90°,
∴∠EOF+∠EBF=180°,
∴∠EOF=∠NOM=120°,
∴∠EOM=∠FON,
∴△OEM≌△OFN(ASA),
∴EM=FN,ON=OM,S△EOM=S△NOF,
∴S四边形BMON=S四边形BEOF=定值,
∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
∴Rt△OBE≌Rt△OBF(HL),
∴BE=BF,
∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
∴欲求最小值,只要求出l的最小值,
∵l=BM+BN+ON+OM=定值+ON+OM,
欲求最小值,只要求出ON+OM的最小值,
∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,
此时定值最小,s=×2×=,l=2+2++=4+,
∴的最小值==2+2.
(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.
∵△ABC是等边三角形,BD=DC,
∴AD平分∠BAC,
∵DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠DEA=∠DEQ=∠AFD=90°,
∴∠EAF+∠EDF=180°,
∵∠EAF=60°,
∴∠EDF=∠PDQ=120°,
∴∠PDF=∠QDE,
∴△PDF≌△QDE(ASA),
∴PF=EQ,
在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
∴CF=CD=1,DF=,
同法可得:BE=1,DE=DF=,
∵AF=AC﹣CF=4﹣1=3,PA=x,
∴PF=EQ=3+x,
∴BQ=EQ﹣BE=2+x,
∴S△BDQ=•BQ•DE=×(2+x)×=x+.
【点睛】
本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。
2022年湖北省武汉市武昌区拼搏联盟毕业升学考试模拟卷数学卷含解析: 这是一份2022年湖北省武汉市武昌区拼搏联盟毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,对于函数y=,下列说法正确的是等内容,欢迎下载使用。
2022年湖北省通城市隽水镇南门中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年湖北省通城市隽水镇南门中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了已知x+=3,则x2+=,初三,下列二次根式,最简二次根式是,估计﹣1的值在等内容,欢迎下载使用。
2021-2022学年陕西省博爱中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年陕西省博爱中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。