2022届湖北省恩施土家族苗族自治州文斗民族初级中学毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
x
…
–2
–1
0
1
2
…
y
…
0
4
6
6
4
…
从上表可知,下列说法错误的是
A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
2.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:
①AD是∠BAC的平分线;
②∠ADC=60°;
③点D在AB的中垂线上;
④S△ACD:S△ACB=1:1.
其中正确的有( )
A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④
3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有( ).
A.1个 B.2个 C.3个 D.4个
4.据调查,某班20为女同学所穿鞋子的尺码如表所示,
尺码(码)
34
35
36
37
38
人数
2
5
10
2
1
则鞋子尺码的众数和中位数分别是( )
A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码
5.下列计算错误的是( )
A.4x3•2x2=8x5 B.a4﹣a3=a
C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
6.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于( )
A.30°10′ B.29°10′ C.29°50′ D.50°10′
7.下列计算正确的是( )
A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a2•a3=a6 D.a8÷a2=a4
8.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为
A.1 B. C. D.
9.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )
A.2011﹣2014年最高温度呈上升趋势
B.2014年出现了这6年的最高温度
C.2011﹣2015年的温差成下降趋势
D.2016年的温差最大
10.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为( )
A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.
12.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y= (x>0)的图象过点B,C,若△OAB的面积为5,则△ABC的面积是________.
13.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.
14.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.
15.分解因式:ax2﹣2ax+a=___________.
16.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.
三、解答题(共8题,共72分)
17.(8分)如图所示:△ABC是等腰三角形,∠ABC=90°.
(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);
(2)垂直平分线l交AC于点D,求证:AB=2DH.
18.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
19.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x/(元/千克)
50
60
70
销售量y/千克
100
80
60
(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?
20.(8分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当>>0时,x的取值范围.
21.(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
22.(10分)发现
如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣ )×180°.
23.(12分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.
如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.
(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;
(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?
24.如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
(1)求证:直线AB是⊙O的切线;
(2)求证:△GOC∽△GEF;
(3)若AB=4BD,求sinA的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.
2、D
【解析】
①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.
【详解】
①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC∙CD=AC∙AD.∴S△ABC=AC∙BC=AC∙AD=AC∙AD,∴S△DAC:S△ABC=AC∙AD:AC∙AD=1:1,④正确.故选D.
【点睛】
本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.
3、C
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.
∴abc<0, ①正确;
2a+b=0,②正确;
由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;
由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;
观察图象得当x=-2时,y<0,
即4a-2b+c<0
∵b=-2a,
∴4a+4a+c<0
即8a+c<0,故⑤正确.
正确的结论有①②⑤,
故选:C
【点睛】
主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
4、D
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
数据36出现了10次,次数最多,所以众数为36,
一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.
故选D.
【点睛】
考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.
5、B
【解析】
根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
【详解】
A选项:4x3•1x1=8x5,故原题计算正确;
B选项:a4和a3不是同类项,不能合并,故原题计算错误;
C选项:(-x1)5=-x10,故原题计算正确;
D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
故选:B.
【点睛】
考查了整式的乘法,关键是掌握整式的乘法各计算法则.
6、C
【解析】
根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.
【详解】
∵AB∥CD,
∴∠D=∠A=50°10′,
∵∠COD=100°,
∴∠C=180°-∠D-∠COD=29°50′.
故选C.
【点睛】
本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.
7、B
【解析】
解:A.a2+a2=2a2,故A错误;
C、a2a3=a5,故C错误;
D、a8÷a2=a6,故D错误;
本题选B.
考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方
8、C
【解析】
作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,
连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN∧的中点,
∴∠BON=30 °,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
∴PA+PB=PA′+PB=A′B=
故选:C.
9、C
【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【详解】
A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.
【点睛】
考查了折线统计图,利用折线统计图获取正确信息是解题关键.
10、C
【解析】
先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
【详解】
解:∵一个正方形花坛的面积为,其边长为,
则a的取值范围为:.
故选:C.
【点睛】
此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、5:1
【解析】
根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.
【详解】
解:
作AE∥BC交DC于点E,交DF于点F,
设每个小正方形的边长为a,
则△DEF∽△DCN,
∴==,
∴EF=a,
∵AF=2a,
∴AE=a,
∵△AME∽△BMC,
∴===,
故答案为:5:1.
【点睛】
本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
12、
【解析】
如图,过C作CD⊥y轴于D,交AB于E.设AB=2a,则BE=AE=CE=a,再设A(x,x),则B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函数的图象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面积为5求得ax=5,即可得a2=,根据S△ABC=AB•CE即可求解.
【详解】
如图,过C作CD⊥y轴于D,交AB于E.
∵AB⊥x轴,
∴CD⊥AB,
∵△ABC是等腰直角三角形,
∴BE=AE=CE,
设AB=2a,则BE=AE=CE=a,
设A(x,x),则B(x,x+2a),C(x+a,x+a),
∵B、C在反比例函数的图象上,
∴x(x+2a)=(x+a)(x+a),
解得x=3a,
∵S△OAB=AB•DE=•2a•x=5,
∴ax=5,
∴3a2=5,
∴a2=,
∴S△ABC=AB•CE=•2a•a=a2=.
故答案为:.
【点睛】
本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.
13、 .
【解析】
延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.
【详解】
解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.
∵AC=6,CF=1,
∴AF=AC-CF=4,
∵∠A=60°,∠AMF=90°,
∴∠AFM=30°,
∴AM=AF=1,
∴FM==1 ,
∵FP=FC=1,
∴PM=MF-PF=1-1,
∴点P到边AB距离的最小值是1-1.
故答案为: 1-1.
【点睛】
本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.
14、
【解析】
根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
【详解】
如图,假设线段CD、AB交于点E,
∵AB是O的直径,弦CD⊥AB,
∴
又∵
∴
∴
∴S阴影=S扇形ODB−S△DOE+S△BEC
故答案为:.
【点睛】
考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.
15、a(x-1)1.
【解析】
先提取公因式a,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
16、2或2.
【解析】
解:本题有两种情形:
(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;
(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.
故答案为2或2.
点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
三、解答题(共8题,共72分)
17、 (1)见解析;(2)证明见解析.
【解析】
(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;
(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.
【详解】
解:(1)如图所示:直线l即为所求;
(2)证明:∵点H是AB的中点,且DH⊥AB,
∴DH∥BC,
∴点D是AC的中点,
∵
∴AB=2DH.
【点睛】
考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.
18、(1)50;(2)240;(3).
【解析】
用喜爱社会实践的人数除以它所占的百分比得到n的值;
先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;
画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.
【详解】
解:(1);
(2)样本中喜爱看电视的人数为(人,
,
所以估计该校喜爱看电视的学生人数为240人;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,
所以恰好抽到2名男生的概率.
【点睛】
本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.
19、 (1)y=-2x+200 (2)W=-2x2+280x-8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.
【解析】
(1)用待定系数法求一次函数的表达式;
(2)利用利润的定义,求与之间的函数表达式;
(3)利用二次函数的性质求极值.
【详解】
解:(1)设,由题意,得,解得,∴所求函数表达式为.
(2).
(3),其中,∵,
∴当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.
考点: 二次函数的实际应用.
20、(1)y=;y=x+1;(2)∠ACO=45°;(3)0
(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;
(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;
(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.
【详解】
(1)∵△AOB的面积为1,并且点A在第一象限,
∴k=2,∴y=;
∵点A的横坐标为1,
∴A(1,2).
把A(1,2)代入y=ax+1得,a=1.
∴y=x+1.
(2)令y=0,0=x+1,
∴x=−1,
∴C(−1,0).
∴OC=1,BC=OB+OC=2.
∴AB=CB,
∴∠ACO=45°.
(3)由图象可知,在第一象限,当y>y>0时,0
此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.
21、调整后的滑梯AD比原滑梯AB增加2.5米
【解析】
试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.
试题解析: Rt△ABD中,
∵AC=3米,
∴AD=2AC=6(m)
∵在Rt△ABC中,
∴AD−AB=6−3.53≈2.5(m).
∴调整后的滑梯AD比原滑梯AB增加2.5米.
22、(1)见解析;(2)见解析;(3)1.
【解析】
(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
【详解】
(1)如图2,延长AB交CD于E,
则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
∴∠ABC=∠A+∠C+∠D;
(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
故答案为1.
【点睛】
此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
23、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.
【解析】
(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;
【详解】
(1)∵共有1种等可能的结果,落回到圈A的只有1种情况,
∴落回到圈A的概率P1=;
(2)列表得:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),
∴最后落回到圈A的概率P2==,
∴她与嘉嘉落回到圈A的可能性一样.
【点睛】
此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.
24、 (1)见解析;(2)见解析;(3).
【解析】
(1)利用等腰三角形的性质,证明OC⊥AB即可;
(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
(3)根据勾股定理和三角函数解答即可.
【详解】
证明:(1)∵OA=OB,AC=BC,
∴OC⊥AB,
∴⊙O是AB的切线.
(2)∵OA=OB,AC=BC,
∴∠AOC=∠BOC,
∵OE=OF,
∴∠OFE=∠OEF,
∵∠AOB=∠OFE+∠OEF,
∴∠AOC=∠OEF,
∴OC∥EF,
∴△GOC∽△GEF,
∴,
∵OD=OC,
∴OD•EG=OG•EF.
(3)∵AB=4BD,
∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
在Rt△BOC中,∵OB2=OC2+BC2,
即(r+m)2=r2+(2m)2,
解得:r=1.5m,OB=2.5m,
∴sinA=sinB=.
【点睛】
考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
湖北省恩施市龙凤镇民族初级中学2022年毕业升学考试模拟卷数学卷含解析: 这是一份湖北省恩施市龙凤镇民族初级中学2022年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了已知二次函数,将抛物线y=﹣,cs30°的值为,计算4+等内容,欢迎下载使用。
2022届江苏省盐城市洋马初级中学毕业升学考试模拟卷数学卷含解析: 这是一份2022届江苏省盐城市洋马初级中学毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。
2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了二次函数y=ax2+bx+c,魏晋时期的数学家刘徽首创割圆术等内容,欢迎下载使用。