2023年高考数学(理数)一轮复习课时52《分类加法计数原理与分步乘法计数原理》达标练习(含详解)
展开2023年高考数学(理数)一轮复习课时52
《分类加法计数原理与分步乘法计数原理》达标练习
一 、选择题
1.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有( )
A.18个 B.15个 C.12个 D.9个
【答案解析】答案为:B
解析:依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).故选B.
2.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有( )
A.6种 B.12种 C.18种 D.20种
【答案解析】答案为:D
解析:分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C=12种情形.所有可能出现的情形共有2+6+12=20(种).
3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为( )
A.42 B.30 C.20 D.12
【答案解析】答案为:A
解析:将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,
插入第2个时有7个空,共7种插法,所以共6×7=42(种).故选A.
4.甲、乙、丙、丁和戊5名同学进行数学应用知识比赛,决出第1名至第5名(没有重名次).已知甲、乙均未得到第1名,且乙不是最后一名,则5名同学的名次排列情况可能有( )
A.27种 B.48种 C.54种 D.72种
【答案解析】答案为:C.
解析:分五步完成:第一步,决出第1名的情况有3种;第二步,决出第5名的情况有3种;第三步,决出第2名的情况有3种;第四步,决出第3名的情况有2种;第五步,决出第4名的情况有1种.因此,根据分步乘法计数原理可知,5名同学的名次排列情况可能有3×3×3×2×1=54(种).
5.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有( )
A.18个 B.15个 C.12个 D.9个
【答案解析】答案为:B
解析:由题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).
6.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( )
A.77 B.49 C.45 D.30
【答案解析】答案为:C;
解析:A={(x,y)|x2+y2≤1,x,y∈Z}={(x,y)|x=±1,y=0;或x=0,y=±1;或x=0,y=0},
B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(x,y)|x=-2,-1,0,1,2;y=-2,-1,0,1,2},A⊕B表示点集.由x1=-1,0,1,x2=-2,-1,0,1,2,得x1+x2=-3,-2,-1,0,1,2,3,共7种取值可能.同理,由y1=-1,0,1,y2=-2,-1,0,1,2,得y1+y2=-3,-2,-1,0,1,2,3,共7种取值可能.当x1+x2=-3或3时,y1+y2可以为-2,-1,0,1,2中的一个值,分别构成5个不同的点,当x1+x2=-2,-1,0,1,2时,y1+y2可以为-3,-2,-1,0,1,2,3中的一个值,分别构成7个不同的点,故A⊕B共有2×5+5×7=45个元素.
7.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数的个数是( )
A.30 B.42 C.36 D.35
【答案解析】答案为:C;
解析:因为a+bi为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.
8.用两个1,一个2,一个0可组成不同四位数的个数是( )
A.18 B.16 C.12 D.9
【答案解析】答案为:D.
解析:根据题意,分3步进行分析:
①0不能放在千位,可以放在百位、十位和个位,有3种情况,
②在剩下的3个数位中任选1个,安排2,有3种情况,
③在最后2个数位安排2个1,有1种情况,则可组成3×3=9个不同四位数,故选D.
9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有( B )
A.4种 B.6种 C.10种 D.16种
【答案解析】答案为:B;
解析:分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),
同理,甲先传给丙时,满足条件的也有3种传递方式.
由分类加法计数原理可知,共有3+3=6(种)传递方法.
10.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数的个数是( )
A.30 B.42 C.36 D.35
【答案解析】答案为:C;
解析:因为a+bi为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.
11.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )
A.144个 B.120个 C.96个 D.72个
【答案解析】答案为:B.
解析:当万位数字为4时,个位数字从0,2中任选一个,共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有CA个偶数.
故符合条件的偶数共有2A+CA=120(个).
12.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是( )
A.9 B.14 C.15 D.21
【答案解析】答案为:B
解析:当x=2时,x≠y,点的个数为1×7=7(个).
当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.
因此满足条件的点共有7+7=14(个).
二 、填空题
13.已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=25,
则符合条件的三角形共有 个.
【答案解析】答案为:325.
解析:根据三边构成三角形的条件可知,c<25+a.
第一类:当a=1,b=25时,c可取25,共1个值;
第二类:当a=2,b=25时,c可取25,26,共2个值;
……
当a=25,b=25时,c可取25,26,…,49,共25个值;
所以三角形的个数为1+2+…+25=325.
14.有A,B,C型高级电脑各一台,甲、乙、丙、丁 4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有 种(用数字作答).
【答案解析】答案为:8;
解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:
第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;
第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;
第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;
第4类,选乙、丙、丁3人,同样也只有1种方法.
根据分类加法计数原理,共有4+2+1+1=8种选派方法.
15.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成18个不同的二次函数,其中偶函数有 个(用数字作答).
【答案解析】答案为:6;
解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.
16.十字路口来往的车辆,如果不允许回头,共有 种行车路线.
【答案解析】答案为:12.
解析:由分步乘法计数原理知4×3=12(种).
2024年(新高考)高考数学一轮复习突破练习10.1《分类加法计数原理与分步乘法计数原理》(含详解): 这是一份2024年(新高考)高考数学一轮复习突破练习10.1《分类加法计数原理与分步乘法计数原理》(含详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
(新高考)高考数学一轮复习分层突破练习10.1《分类加法计数原理与分步乘法计数原理》(含详解): 这是一份(新高考)高考数学一轮复习分层突破练习10.1《分类加法计数原理与分步乘法计数原理》(含详解),共7页。
(新高考)高考数学一轮复习课时练习10.1《分类加法计数原理与分步乘法计数原理》(含解析): 这是一份(新高考)高考数学一轮复习课时练习10.1《分类加法计数原理与分步乘法计数原理》(含解析),共12页。