2021-2022学年甘肃省张掖市临泽二中学、三中学、四中学中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.估计的值在( )
A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间
2.在△ABC中,若=0,则∠C的度数是( )
A.45° B.60° C.75° D.105°
3.tan60°的值是( )
A. B. C. D.
4.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
5.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
A. B.
C. D.
6.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )
A.极差是20 B.中位数是91 C.众数是1 D.平均数是91
7.在△ABC中,∠C=90°,,那么∠B的度数为( )
A.60° B.45° C.30° D.30°或60°
8.下列各式计算正确的是( )
A. B. C. D.
9.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )
A. B. C. D.
10.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()
A. B.8 C. D.
11.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )
A.2πcm B.4πcm C.6πcm D.8πcm
12.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
A.4.995×1011 B.49.95×1010
C.0.4995×1011 D.4.995×1010
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为______.
14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.
15.以下两题任选一题作答:
(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_____m.
(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.
16.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).
17.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.
18.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在中,,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,
判断与的位置关系,并说明理由;若,,,求线段的长.
20.(6分)解方程: +=1.
21.(6分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?
22.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.
23.(8分)先化简,再求代数式()÷的值,其中x=sin60°,y=tan30°.
24.(10分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点
求m的值及C点坐标;
在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
为抛物线上一点,它关于直线BC的对称点为Q
当四边形PBQC为菱形时,求点P的坐标;
点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.
25.(10分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.
26.(12分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?
27.(12分)解不等式组并写出它的所有整数解.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵9<11<16,
∴,
∴
故选B.
2、C
【解析】
根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
【详解】
由题意,得 cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C.
3、A
【解析】
根据特殊角三角函数值,可得答案.
【详解】
tan60°=
故选:A.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
4、D
【解析】
根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
【详解】
∵∠DAB=∠DEB,
∴tan∠DEB= tan∠DAB=,
故选D.
【点睛】
本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
5、B
【解析】
抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
【详解】
解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.
【点睛】
本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
6、D
【解析】
试题分析:因为极差为:1﹣78=20,所以A选项正确;
从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;
因为1出现了两次,最多,所以众数是1,所以C选项正确;
因为,所以D选项错误.
故选D.
考点:①众数②中位数③平均数④极差.
7、C
【解析】
根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
【详解】
解:∵,
∴∠A=60°.
∵∠C=90°,
∴∠B=90°-60°=30°.
点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
8、B
【解析】
A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
B选项中,∵,∴本选项正确;
C选项中,∵,而不是等于,∴本选项错误;
D选项中,∵,∴本选项错误;
故选B.
9、C
【解析】
先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
【详解】
由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
当0<x≤2,y=x,
当2<x≤4,y=1,
由以上分析可知,这个分段函数的图象是C.
故选C.
10、D
【解析】
∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.
设⊙O的半径为r,则OC=r-2,
在Rt△AOC中,∵AC=1,OC=r-2,
∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.
∴AE=2r=3.
连接BE,
∵AE是⊙O的直径,∴∠ABE=90°.
在Rt△ABE中,∵AE=3,AB=8,∴.
在Rt△BCE中,∵BE=6,BC=1,∴.故选D.
11、B
【解析】
首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
【详解】
解:如图,连接OC,AO,
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的长= =4π,
故选B.
【点睛】
本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.
12、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
将499.5亿用科学记数法表示为:4.995×1.
故选D.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.
详解:∵点G是△ABC重心,BC=6,
∴CD=BC=3,AG:AD=2:3,
∵GE∥BC,
∴△AEG∽△ADC,
∴GE:CD=AG:AD=2:3,
∴GE=2.
故答案为2.
点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.
14、6.4
【解析】
根据平行投影,同一时刻物长与影长的比值固定即可解题.
【详解】
解:由题可知:,
解得:树高=6.4米.
【点睛】
本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.
15、4 8
【解析】
(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;
(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
故可列出方程求解.
【详解】
(1)∵∠ABC=150°,∴斜面BC的坡角为30°,
∴h==4m
(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
依题意得
解得n=8
故为八边形.
【点睛】
此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.
16、
【解析】
【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.
【详解】∵S阴影=S扇形ABA′+S半圆-S半圆
=S扇形ABA′
=
=,
故答案为.
【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.
17、7.5
【解析】
试题解析:当旋转到达地面时,为最短影长,等于AB,
∵最小值3m,
∴AB=3m,
∵影长最大时,木杆与光线垂直,
即AC=5m,
∴BC=4,
又可得△CAB∽△CFE,
∴
∵AE=5m,
∴
解得:EF=7.5m.
故答案为7.5.
点睛:相似三角形的性质:相似三角形的对应边成比例.
18、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1).理由见解析;(2).
【解析】
(1)根据得到∠A=∠PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;
(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论.
【详解】
(1).理由如下,
∵,
∴,
∵,
∴,
∵垂直平分,
∴,
∴,
∴,
∴,
即.
(2)
连接,设,
由(1)得,,又,,
∵,
∴,
∴,
解得,即.
【点睛】
本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键.
20、-3
【解析】
试题分析:解得x=-3
经检验: x=-3是原方程的根.
∴原方程的根是x=-3
考点:解一元一次方程
点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
21、官有200人,兵有800人
【解析】
设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设官有x人,兵有y人,
依题意,得:
,
解得: .
答:官有200人,兵有800人.
【点睛】
本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
22、(1)见解析(2)见解析
【解析】
(1)根据旋转变换的定义和性质求解可得;
(2)根据位似变换的定义和性质求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△DEF即为所求.
【点睛】
本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.
23、
【解析】
先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可
【详解】
原式
∴原式
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
24、,;存在,;或;当时,.
【解析】
(1)用待定系数法求出抛物线解析式;
(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
【详解】
解:(1)将B(4,0)代入,解得,m=4,
∴二次函数解析式为,令x=0,得y=4,
∴C(0,4);
(2)存在,理由:∵B(4,0),C(0,4),
∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
∴,
∴,
∴△=1﹣4b=0,∴b=4,
∴,∴M(2,6);
(3)①如图,∵点P在抛物线上,
∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4),
∴线段BC的垂直平分线的解析式为y=x,
∴m=,
∴m=,
∴P(,)或P(,);
②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,
∵点D在直线BC上,∴D(t,﹣t+4),
∵PD=﹣(﹣t+4)=,BE+CF=4,
∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=
∵0<t<4,
∴当t=2时,S四边形PBQC最大=1.
考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.
25、(1)矩形的周长为4m;(2)矩形的面积为1.
【解析】
(1)根据题意和矩形的周长公式列出代数式解答即可.
(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.
【详解】
(1)矩形的长为:m﹣n,
矩形的宽为:m+n,
矩形的周长为:2[(m-n)+(m+n)]=4m;
(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,
当m=7,n=4时,S=72-42=1.
【点睛】
本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.
26、该工程队原计划每周修建5米.
【解析】
找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.
【详解】
设该工程队原计划每周修建x米.
由题意得:+1.
整理得:x2+x﹣32=2.
解得:x1=5,x2=﹣6(不合题意舍去).
经检验:x=5是原方程的解.
答:该工程队原计划每周修建5米.
【点睛】
本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.
27、不等式组的整数解有﹣1、0、1.
【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.
【详解】
,
解不等式①可得,x>-2;
解不等式②可得,x≤1;
∴不等式组的解集为:﹣2<x≤1,
∴不等式组的整数解有﹣1、0、1.
【点睛】
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.
重庆市南川中学2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份重庆市南川中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了计算÷的结果是等内容,欢迎下载使用。
南京栖霞中学2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份南京栖霞中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题等内容,欢迎下载使用。
北京三中学2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份北京三中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算结果为a6的是等内容,欢迎下载使用。