甘肃省静宁县第三中学2022年中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为( )
A.780×105 B.78×106 C.7.8×107 D.0.78×108
2.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )
A.8米 B.米 C.米 D.米
3.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长
C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:学*科*网]
4.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌
5.正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是( )
A.k>1 B.k<1 C.k>﹣1 D.k<﹣1
6.-的立方根是( )
A.-8 B.-4 C.-2 D.不存在
7.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31
8.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A.5个 B.4个 C.3个 D.2个
9.下列事件是必然事件的是( )
A.任意作一个平行四边形其对角线互相垂直
B.任意作一个矩形其对角线相等
C.任意作一个三角形其内角和为
D.任意作一个菱形其对角线相等且互相垂直平分
10.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A.3步 B.5步 C.6步 D.8步
二、填空题(本大题共6个小题,每小题3分,共18分)
11.方程=1的解是_____.
12.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.
13.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
14.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.
15.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.
16.竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h=﹣2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第____秒时离地面最高.
三、解答题(共8题,共72分)
17.(8分)如图,两座建筑物的水平距离为.从点测得点的仰角为53° ,从点测得点的俯角为37° ,求两座建筑物的高度(参考数据:
18.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)
19.(8分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.
求证:AP=BQ;当BQ= 时,求的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.
20.(8分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.
(1)求证:∠A=2∠BDF;
(2)若AC=3,AB=5,求CE的长.
21.(8分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.
(1)求证:方程总有两个不相等的实数根;
(2)写出一个m的值,并求出此时方程的根.
22.(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.
(1)在图1中,过点O作AC的平行线;
(2)在图2中,过点E作AC的平行线.
23.(12分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
24.如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.
(1)求抛物线的解析式;
(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
科学记数法记数时,主要是准确把握标准形式a×10n即可.
【详解】
解:78000000= 7.8×107.
故选C.
【点睛】
科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.
2、C
【解析】
此题考查的是解直角三角形
如图:AC=4,AC⊥BC,
∵梯子的倾斜角(梯子与地面的夹角)不能>60°.
∴∠ABC≤60°,最大角为60°.
即梯子的长至少为米,
故选C.
3、D
【解析】
试题分析:
解:由图形可得出:甲所用铁丝的长度为:2a+2b,
乙所用铁丝的长度为:2a+2b,
丙所用铁丝的长度为:2a+2b,
故三种方案所用铁丝一样长.
故选D.
考点:生活中的平移现象
4、C
【解析】
试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.
考点:因式分解.
5、D
【解析】
根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.
【详解】
解:∵正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,
∴k+1<0,
解得,k<-1;
故选D.
【点睛】
本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
6、C
【解析】
分析:首先求出的值,然后根据立方根的计算法则得出答案.
详解:∵,, ∴的立方根为-2,故选C.
点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
7、C
【解析】
本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
【详解】
∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.
故选:C.
【点睛】
此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
8、C
【解析】
矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;
等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
平行四边形不是轴对称图形,是中心对称图形,不符合题意.
共3个既是轴对称图形又是中心对称图形.
故选C.
9、B
【解析】
必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
【详解】
解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
10、C
【解析】
试题解析:根据勾股定理得:斜边为
则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,
故选C
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x=3
【解析】
去分母得:x﹣1=2,
解得:x=3,
经检验x=3是分式方程的解,
故答案为3.
【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.
12、3.
【解析】
先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.
【详解】
∵四边形ABCD是矩形,
∴∠ADC=90°,AB=CD,
∵DE⊥AC,
∴∠AED=90°,
∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,
∴∠ADE=∠ACD,
∴tan∠ACD=tan∠ADE==,
设AD=4k,CD=3k,则AC=5k,
∴5k=5,
∴k=1,
∴CD=AB=3,
故答案为3.
【点睛】
本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.
13、
【解析】
摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
故答案是:.
14、
【解析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
【详解】
列表如下:
﹣2
﹣1
2
﹣2
2
﹣4
﹣1
2
﹣2
2
﹣4
﹣2
由表可知,共有6种等可能结果,其中积为正数的有2种结果,
所以积为正数的概率为,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
15、(a+1)1.
【解析】
原式提取公因式,计算即可得到结果.
【详解】
原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.
【点睛】
考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.
16、.
【解析】
首先根据题意得出m的值,进而求出t=﹣的值即可求得答案.
【详解】
∵竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h=﹣2t2+mt+,小球经过秒落地,
∴t=时,h=0,
则0=﹣2×()2+m+,
解得:m=,
当t=﹣=﹣时,h最大,
故答案为:.
【点睛】
本题考查了二次函数的应用,正确得出m的值是解题关键.
三、解答题(共8题,共72分)
17、建筑物的高度为.建筑物的高度为.
【解析】
分析:过点D作DE⊥AB于于E,则DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解决问题.
详解:过点D作DE⊥AB于于E,则DE=BC=60m,
在Rt△ABC中,tan53°==,∴AB=80(m).
在Rt△ADE中,tan37°==,∴AE=45(m),
∴BE=CD=AB﹣AE=35(m).
答:两座建筑物的高度分别为80m和35m.
点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
18、17.3米.
【解析】
分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.
详解:过点C作于D,
∵
∴
∴米,
在中,
∵
∴
∴
∴米,
∴米.
答:这条河的宽是米.
点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.
19、(1)详见解析;(2);(3)4
(1) 连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.
(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD度数,由弧长公式即可求得答案.
(3)由直角三角形性质可得△APO的外心是OA的中点 ,结合题意可得OC取值范围.
【详解】
(1)证明:连接OQ.
∵AP、BQ是⊙O的切线,
∴OP⊥AP,OQ⊥BQ,
∴∠APO=∠BQO=90∘,
在Rt△APO和Rt△BQO中,
,
∴Rt△APO≌Rt△BQO,
∴AP=BQ.
(2)∵Rt△APO≌Rt△BQO,
∴∠AOP=∠BOQ,
∴P、O、Q三点共线,
∵在Rt△BOQ中,cosB=,
∴∠B=30∘,∠BOQ= 60° ,
∴OQ=OB=4,
∵∠COD=90°,
∴∠QOD= 90°+ 60° = 150°,
∴优弧QD的长=,
(3)解:设点M为Rt△APO的外心,则M为OA的中点,
∵OA=1,
∴OM=4,
∴当△APO的外心在扇形COD的内部时,OM<OC,
∴OC的取值范围为4<OC<1.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.
20、(1)见解析;(2)1
【解析】
(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;
(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.
【详解】
(1)证明:连接AD,如图,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵EF为切线,
∴OD⊥DF,
∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,
∴∠BDF=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠OAD=∠BDF,
∵D是弧BC的中点,
∴∠COD=∠OAD,
∴∠CAB=2∠BDF;
(2)解:连接BC交OD于H,如图,
∵D是弧BC的中点,
∴OD⊥BC,
∴CH=BH,
∴OH为△ABC的中位线,
∴,
∴HD=2.5-1.5=1,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴四边形DHCE为矩形,
∴CE=DH=1.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.
21、(1)见解析;(2)x1=1,x2=2
【解析】
(1)根据根的判别式列出关于m的不等式,求解可得;
(2)取m=-2,代入原方程,然后解方程即可.
【详解】
解:(1)根据题意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,
∵(m+2)2+4>1,
∴方程总有两个不相等的实数根;
(2)当m=-2时,由原方程得:x2-4x+2=1.
整理,得(x-1)(x-2)=1,
解得x1=1,x2=2.
【点睛】
本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.
22、(1)作图见解析;(2)作图见解析.
【解析】
试题分析:利用正六边形的特性作图即可.
试题解析:(1)如图所示(答案不唯一):
(2)如图所示(答案不唯一):
23、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
【解析】
分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
详解:(1)被随机抽取的学生共有14÷28%=50(人);
(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
如图所示:
(3)参与了4项或5项活动的学生共有×2000=720(人).
点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
24、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).
【解析】
(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;
(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;
(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.
【详解】
解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,
∴抛物线与x轴的交点B的坐标为(1,0),
设抛物线解析式为y=a(x+3)(x﹣1),
将点C(0,﹣3)代入,得:﹣3a=﹣3,
解得a=1,
则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;
(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.
∵S△POC=2S△BOC,
∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.
当a=2时,点P的坐标为(2,21);
当a=﹣2时,点P的坐标为(﹣2,5).
∴点P的坐标为(2,21)或(﹣2,5).
(3)如图所示:
设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,
∴直线AC的解析式为y=﹣x﹣3.
设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).
∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,
∴当x=﹣时,QD有最大值,QD的最大值为.
【点睛】
本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.
2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,式子有意义的x的取值范围是,下列实数为无理数的是等内容,欢迎下载使用。
2022届安康市重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届安康市重点中学中考数学最后冲刺浓缩精华卷含解析,共19页。
2022届福建省福州延安中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届福建省福州延安中学中考数学最后冲刺浓缩精华卷含解析,共22页。