2021-2022学年福建省南平市剑津片区中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.6 B.8 C.10 D.12
2.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根 B.有两个相等实数根
C.有且只有一个实数根 D.没有实数根
3.二次函数的图像如图所示,下列结论正确是( )
A. B. C. D.有两个不相等的实数根
4.下列计算正确的是
A. B. C. D.
5.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )
A.10° B.20° C.25° D.30°
6.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是( )
A.160元 B.180元 C.200元 D.220元
7.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为( )
A.﹣12 B.﹣32 C.32 D.﹣36
8.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是( )
A. B.
C. D.
9.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
10.下列事件是必然事件的是( )
A.任意作一个平行四边形其对角线互相垂直
B.任意作一个矩形其对角线相等
C.任意作一个三角形其内角和为
D.任意作一个菱形其对角线相等且互相垂直平分
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
12.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
13.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
14.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.
15.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.
16.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
17.如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.
三、解答题(共7小题,满分69分)
18.(10分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.
19.(5分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
(1)如图1,当0<t<2时,求证:DF∥CB;
(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.
20.(8分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:1.求的值.
21.(10分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.
22.(10分)解不等式组:.
23.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
(1)求抛物线的解析式及点D的坐标;
(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.
24.(14分)已知:AB为⊙O上一点,如图,,,BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.
(1)求CE的长;
(2)延长CE到F,使,连结BF并延长BF交⊙O于点G,求BG的长;
(3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,MA
∵△ABC是等腰三角形,点D是BC边上的中点
∴
∴
解得
∵EF是线段AC的垂直平分线
∴点A关于直线EF的对称点为点C
∴
∵
∴AD的长为BM+MD的最小值
∴△CDM的周长最短
故选:C.
【点睛】
本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
2、A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
3、C
【解析】
【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得 3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.
【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;
当x=-1时, y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
∵抛物线的顶点为(1,3),
∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,
故选C.
【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.
4、C
【解析】
根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.
【详解】
、与不是同类项,不能合并,此选项错误;
、,此选项错误;
、,此选项正确;
、,此选项错误.
故选:.
【点睛】
此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.
5、C
【解析】
分析:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,∴∠ABC=60°.
∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.
∵GH∥EF,∴∠2=∠AEC=25°.
故选C.
6、C
【解析】
利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.
【详解】
解:设原价为x元,根据题意可得:
80%x=140+20,
解得:x=1.
所以该商品的原价为1元;
故选:C.
【点睛】
此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.
7、B
【解析】
解:
∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
∴OA=5,AB∥OC,
∴点B的坐标为(8,﹣4),
∵函数y=(k<0)的图象经过点B,
∴﹣4=,得k=﹣32.
故选B.
【点睛】
本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
8、C
【解析】
根据左视图是从物体的左面看得到的视图解答即可.
【详解】
解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的
长方形,
故选C.
【点睛】
本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.
9、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
10、B
【解析】
必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
【详解】
解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、①③⑤
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.
【详解】
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此选项成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE= = = ,
∴BF=EF= ,
故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP= ,
又∵PB= ,
∴BE= ,
∵△APD≌△AEB,
∴PD=BE= ,
∴S △ABP+S △ADP=S △ABD-S △BDP= S 正方形ABCD- ×DP×BE= ×(4+ )- × × = + .
故此选项不正确.
⑤∵EF=BF= ,AE=1,
∴在Rt△ABF中,AB 2=(AE+EF) 2+BF 2=4+ ,
∴S 正方形ABCD=AB 2=4+ ,
故此选项正确.
故答案为①③⑤.
【点睛】
本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
12、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
【点睛】
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
13、
【解析】
【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
OA2==4,点A2的坐标为(4,0),
这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
以此类推便可求出点A2019的坐标为(22019,0),
则的长是,
故答案为:.
【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
14、1≤a≤1
【解析】
根据y的取值范围可以求得相应的x的取值范围.
【详解】
解:∵二次函数y=x1﹣4x+4=(x﹣1)1,
∴该函数的顶点坐标为(1,0),对称轴为:x=﹣,
把y=0代入解析式可得:x=1,
把y=1代入解析式可得:x1=3,x1=1,
所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,
故可得:1≤a≤1,
故答案为:1≤a≤1.
【点睛】
此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
15、40°
【解析】
:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°
16、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
17、
【解析】
分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.
详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为.
故答案为.
点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.
三、解答题(共7小题,满分69分)
18、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=﹣80x+60(0≤x≤);(3)机场大巴与货车相遇地到机场C的路程为km.
【解析】
(1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;
(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;
(3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程.
【详解】
解:(1)60+20=80(km),
(h)
∴连接A. B两市公路的路程为80km,货车由B市到达A市所需时间为h.
(2)设所求函数表达式为y=kx+b(k≠0),
将点(0,60)、代入y=kx+b,
得: 解得:
∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为
(3)设线段ED对应的函数表达式为y=mx+n(m≠0)
将点代入y=mx+n,
得: 解得:
∴线段ED对应的函数表达式为
解方程组得
∴机场大巴与货车相遇地到机场C的路程为km.
【点睛】
本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.
19、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
(3)分为两种情况:根据三角形面积公式求出即可.
【详解】
(1)证明:如图1.
∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
∴∠AOB=90°.
∵DP⊥AB于点P,
∴∠DPB=90°,
∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直线DF与CB的位置关系是:DF⊥CB,
证明:延长DF交CB于点Q,如图2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:过M作MN⊥y轴于N,
∵M(4,-1),
∴MN=4,ON=1,
当E在y轴的正半轴上时,如图3,
∵△MCE的面积等于△BCO面积的倍时,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
当E在y轴的负半轴上时,如图4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐标是(0,)或(0,-).
【点睛】
本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
20、
【解析】
先根据平行线的性质证明△ADE∽△FGH,再由线段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.
【详解】
解:∵DE∥BC,∴∠ADE=∠B,
∵FG∥AB,
∴∠FGH=∠B,
∴∠ADE=∠FGH,
同理:∠AED=∠FHG,
∴△ADE∽△FGH,
∴ ,
∵DE∥BC ,FG∥AB,
∴DF=BG,
同理:FE=HC,
∵BG︰GH︰HC=2︰4︰1,
∴设BG=2k,GH=4k,HC=1k,
∴DF=2k,FE=1k,
∴DE=5k,
∴.
【点睛】
本题考查了平行线的性质和三角形相似的判定和相似比.
21、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.
【解析】
试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;
(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.
(1)把x=-1代入得1+m-2=1,解得m=1
∴2--2=1.
∴
∴另一根是2;
(2)∵,
∴方程①有两个不相等的实数根.
考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程
点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根
22、﹣4≤x<1
【解析】
先求出各不等式的
【详解】
解不等式x﹣1<2,得:x<1,
解不等式2x+1≥x﹣1,得:x≥﹣4,
则不等式组的解集为﹣4≤x<1.
【点睛】
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
23、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
【解析】
分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
详解:
(1)∵OB=OC=1,
∴B(1,0),C(0,-1).
∴,
解得,
∴抛物线的解析式为.
∵=,
∴点D的坐标为(2,-8).
(2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
∵∠FAB=∠EDB,
∴tan∠FAG=tan∠BDE,
即,
解得,(舍去).
当x=7时,y=,
∴点F的坐标为(7,).
当点F在x轴下方时,设同理求得点F的坐标为(5,).
综上所述,点F的坐标为(7,)或(5,).
(3)∵点P在x轴上,
∴根据菱形的对称性可知点P的坐标为(2,0).
如图,当MN在x轴上方时,设T为菱形对角线的交点.
∵PQ=MN,
∴MT=2PT.
设TP=n,则MT=2n. ∴M(2+2n,n).
∵点M在抛物线上,
∴,即.
解得,(舍去).
∴MN=2MT=4n=.
当MN在x轴下方时,设TP=n,得M(2+2n,-n).
∵点M在抛物线上,
∴,
即.
解得,(舍去).
∴MN=2MT=4n=.
综上所述,菱形对角线MN的长为或.
点睛:
1.求二次函数的解析式
(1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
24、 (1) CE=4;(2)BG=8;(3)证明见解析.
【解析】
(1)只要证明△ABC∽△CBE,可得,由此即可解决问题;
(2)连接AG,只要证明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解决问题;
(3)通过计算首先证明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可证明.
【详解】
解:(1)∵BH与⊙O相切于点B,
∴AB⊥BH,
∵BH∥CE,
∴CE⊥AB,
∵AB是直径,
∴∠CEB=∠ACB=90°,
∵∠CBE=∠ABC,
∴△ABC∽△CBE,
∴,
∵AC=,
∴CE=4.
(2)连接AG.
∵∠FEB=∠AGB=90°,∠EBF=∠ABG,
∴△ABG∽△FBE,
∴,
∵BE==4,
∴BF= ,
∴,
∴BG=8.
(3)易知CF=4+=5,
∴GF=BG﹣BF=5,
∴CF=GF,
∴∠FCG=∠FGC,
∵CF∥BD,
∴∠GCF=∠BDG,
∴∠BDG=∠BGD,
∴BG=BD.
【点睛】
本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.
2023-2024学年福建省南平市剑津片区数学九上期末调研模拟试题含答案: 这是一份2023-2024学年福建省南平市剑津片区数学九上期末调研模拟试题含答案,共7页。试卷主要包含了下列是随机事件的是,下列事件是不可能发生的是等内容,欢迎下载使用。
2023-2024学年福建省南平市剑津片区八上数学期末调研试题含答案: 这是一份2023-2024学年福建省南平市剑津片区八上数学期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,如图,,是两个连续整数,若,则等内容,欢迎下载使用。
福建省南平市剑津片区重点达标名校2021-2022学年中考数学全真模拟试题含解析: 这是一份福建省南平市剑津片区重点达标名校2021-2022学年中考数学全真模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中正确的是,下列计算正确的是等内容,欢迎下载使用。