2022年福建省南平市剑津片区十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )
A.10° B.12.5° C.15° D.20°
2.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
3.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为( )
A. B.π C.50 D.50π
4.下列说法错误的是( )
A.的相反数是2 B.3的倒数是
C. D.,0,4这三个数中最小的数是0
5.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
6.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
其中合理的是( )
A.① B.② C.①② D.①③
7.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )
A.315° B.270° C.180° D.135°
8.当 a>0 时,下列关于幂的运算正确的是( )
A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a5
9.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是( )
A.m> B.m>且m≠2 C.﹣<m<2 D.<m<2
10.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.
如果令
其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是( )
A.同意第1号或者第2号同学当选的人数
B.同时同意第1号和第2号同学当选的人数
C.不同意第1号或者第2号同学当选的人数
D.不同意第1号和第2号同学当选的人数
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.
12.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.
13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
14.函数中自变量x的取值范围是___________.
15.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b____c(用“>”或“<”号填空)
16.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程 .
三、解答题(共8题,共72分)
17.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m= .半圆D与数轴有两个公共点,设另一个公共点是C.
①直接写出m的取值范围是 .
②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.
18.(8分)先化简,再求值:,其中x=-5
19.(8分)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
20.(8分)先化简,再求值:,其中
21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
22.(10分)如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度数;四边形ABCD的面积(结果保留根号).
23.(12分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F. 求证:△ABF≌△CDE; 如图,若∠1=65°,求∠B的大小.
24.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.
(I)如图①,若∠F=50°,求∠BGF的大小;
(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
∴∠DAC=∠BAD=30°,
∵AD=AE(已知),
∴∠ADE=75°
∴∠EDC=90°-∠ADE=15°.
故选C.
考点:本题主要考查了等腰三角形的性质,三角形内角和定理
点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
2、B
【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
【详解】
解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
∴抛物线与x轴的另一交点坐标为(1,1),
∴抛物线过原点,结论①正确;
②∵当x=﹣1时,y>1,
∴a﹣b+c>1,结论②错误;
③当x<1时,y随x增大而减小,③错误;
④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
∴c=1,
∴b=﹣4a,c=1,
∴4a+b+c=1,
当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤∵抛物线的顶点坐标为(2,b),
∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
综上所述,正确的结论有:①④⑤.
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
3、A
【解析】
根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.
【详解】
解:圆锥的侧面积=•5•5=.
故选A.
【点睛】
本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
4、D
【解析】
试题分析:﹣2的相反数是2,A正确;
3的倒数是,B正确;
(﹣3)﹣(﹣5)=﹣3+5=2,C正确;
﹣11,0,4这三个数中最小的数是﹣11,D错误,
故选D.
考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.
5、C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
6、B
【解析】
①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
故选B.
【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
7、B
【解析】
利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.
【详解】
如图,
∵∠1、∠2是△CDE的外角,
∴∠1=∠4+∠C,∠2=∠3+∠C,
即∠1+∠2=2∠C+(∠3+∠4),
∵∠3+∠4=180°-∠C=90°,
∴∠1+∠2=2×90°+90°=270°.
故选B.
【点睛】
此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.
8、A
【解析】
直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.
【详解】
A选项:a0=1,正确;
B选项:a﹣1= ,故此选项错误;
C选项:(﹣a)2=a2,故此选项错误;
D选项:(a2)3=a6,故此选项错误;
故选A.
【点睛】
考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键.
9、D
【解析】
根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2) >0,解得m>且m≠﹣2,再利用根与系数的关系得到, m﹣2≠0,解得<m<2,即可求出答案.
【详解】
解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,
∴m>且m≠﹣2,
∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,
∴﹣>0,m﹣2≠0,
∴<m<2,
∵m>,
∴<m<2,
故选:D.
【点睛】
本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.
10、B
【解析】
先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.
【详解】
第1,2,3,……,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a1,1来确定,
是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a1,2来确定,
∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,
故选B.
【点睛】
本题考查了推理应用题,题目比较新颖,是基础题.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、20
【解析】
先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.
【详解】
设黄球的个数为x个,
∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,
∴=60%,
解得x=30,
∴布袋中白色球的个数很可能是50-30=20(个).
故答案为:20.
【点睛】
本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.
12、1.
【解析】
先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.
【详解】
对称轴为
∵a=﹣1<0,
∴当x>1时,y随x的增大而减小,
∴当x=2时,二次函数y=﹣(x﹣1)2+2的最大值为1,
故答案为:1.
【点睛】
本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.
13、3﹣或1
【解析】
分两种情况:情况一:如图一所示,当∠A'DE=90°时;
情况二:如图二所示,当∠A'ED=90°时.
【详解】
解:如图,当∠A'DE=90°时,△A'ED为直角三角形,
∵∠A'=∠A=30°,
∴∠A'ED=60°=∠BEC=∠B,
∴△BEC是等边三角形,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=1,
设AD=A'D=x,则DE=1﹣x,
∵Rt△A'DE中,A'D=DE,
∴x=(1﹣x),
解得x=3﹣,
即AD的长为3﹣;
如图,当∠A'ED=90°时,△A'ED为直角三角形,
此时∠BEC=90°,∠B=60°,
∴∠BCE=30°,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=4﹣1=3,
∴DE=3﹣x,
设AD=A'D=x,则
Rt△A'DE中,A'D=1DE,即x=1(3﹣x),
解得x=1,
即AD的长为1;
综上所述,即AD的长为3﹣或1.
故答案为3﹣或1.
【点睛】
本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.
14、x≤2
【解析】
试题解析:根据题意得:
解得:.
15、<
【解析】
试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1 16、.
【解析】
试题解析:∵原计划用的时间为:
实际用的时间为:
∴可列方程为:
故答案为
三、解答题(共8题,共72分)
17、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
【解析】
(1)根据题意由勾股定理即可解答
(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
【详解】
(1)当半圆与数轴相切时,AB⊥OB,
由勾股定理得m= ,
故答案为 .
(2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
当O、A、B三点在数轴上时,m=7+4=11,
∴半圆D与数轴有两个公共点时,m的取值范围为.
故答案为.
②如图,连接DC,当BC=2时,
∵BC=CD=BD=2,
∴△BCD为等边三角形,
∴∠BDC=60°,
∴∠ADC=120°,
∴扇形ADC的面积为 ,
,
∴△AOB与半圆D的公共部分的面积为 ;
(3)如图1,
当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
解得x= ,OH= ,AH= ,
∴tan∠AOB=,
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,
设BH=x,则72﹣(4﹣x)2=42﹣x2,
解得x= ,OH=,AH=,
∴tan∠AOB=.
综合以上,可得tan∠AOB的值为或.
【点睛】
此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
18、,-
【解析】
分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.
详解:
.
当时,原式.
点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.
19、(1)见解析(2)相切
【解析】
(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即
可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
【详解】
(1)如图所示:
;
(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点睛】
此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,
正确利用角平分线的性质求出d=r是解题关键.
20、 ;.
【解析】
先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.
【详解】
解:原式==
把代入得:原式=.
【点睛】
本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.
21、(1)0.3 ,45;(2)108°;(3).
【解析】
(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
(2)B组的频率乘以360°即可求得答案;
(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
【详解】
(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
故答案为0.3,45;
(2)360°×0.3=108°.
答:扇形统计图中B组对应扇形的圆心角为108°.
(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:
∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22、(1);
(2)
【解析】
(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;
(2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.
【详解】
解:(1)连接AC,如图所示:
∵AB=BC=1,∠B=90°
∴AC=,
又∵AD=1,DC=,
∴ AD2+AC2=3 CD2=()2=3
即CD2=AD2+AC2
∴∠DAC=90°
∵AB=BC=1
∴∠BAC=∠BCA=45°
∴∠BAD=135°;
(2)由(1)可知△ABC和△ADC是Rt△,
∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××= .
【点睛】
考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
23、(1)证明见解析;(2)50°.
【解析】
试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.
试题解析:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AD∥BC,∠B=∠D, ∴∠1=∠DCE,
∵AF∥CE, ∴∠AFB=∠ECB, ∵CE平分∠BCD, ∴∠DCE=∠ECB, ∴∠AFB=∠1,
在△ABF和△CDE中,, ∴△ABF≌△CDE(AAS);
(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB, ∴∠1=∠DCE=65°,
∴∠B=∠D=180°﹣2×65°=50°.
考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.
24、(I)65°;(II)72°
【解析】
(I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;
(II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.
【详解】
解:(I)如图①,连接OB,
∵BF为⊙O的切线,
∴OB⊥BF,
∴∠OBF=90°,
∵OA⊥CD,
∴∠OED=90°,
∴∠AOB=180°﹣∠F=180°﹣50°=130°,
∵OA=OB,
∴∠1=∠A=(180°﹣130°)=25°,
∴∠2=90°﹣∠1=65°,
∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;
(II)如图②,连接OB,BO的延长线交AC于H,
∵BF为⊙O的切线,
∴OB⊥BF,
∵AC∥BF,
∴BH⊥AC,
与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,
∵OA=OB,
∴∠OBA=∠OAB=(180°﹣144°)=18°,
∵∠AOB=∠OHA+∠OAH,
∴∠OAH=144°﹣90°=54°,
∴∠BAC=∠OAH+∠OAB=54°+18°=72°,
∴∠BDG=∠BAC=72°.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.
2023-2024学年福建省南平市剑津片区数学九上期末调研模拟试题含答案: 这是一份2023-2024学年福建省南平市剑津片区数学九上期末调研模拟试题含答案,共7页。试卷主要包含了下列是随机事件的是,下列事件是不可能发生的是等内容,欢迎下载使用。
2023-2024学年福建省南平市剑津片区八上数学期末调研试题含答案: 这是一份2023-2024学年福建省南平市剑津片区八上数学期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,如图,,是两个连续整数,若,则等内容,欢迎下载使用。
2022-2023学年福建省南平市剑津片区数学七下期末联考试题含答案: 这是一份2022-2023学年福建省南平市剑津片区数学七下期末联考试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,点为直线上一点,则OA的长度为等内容,欢迎下载使用。