2022年福建省南平市邵武市四中学片区中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如果向北走6km记作+6km,那么向南走8km记作( )
A.+8km B.﹣8km C.+14km D.﹣2km
2.下列各数中是无理数的是( )
A.cos60° B. C.半径为1cm的圆周长 D.
3. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )
月用水量(吨)
4
5
6
9
户数(户)
3
4
2
1
A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨
4.在平面直角坐标系中,点(-1,-2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.圆锥的底面半径为2,母线长为4,则它的侧面积为( )
A.8π B.16π C.4π D.4π
6.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
A. B. C. D.
7.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2 B.3 C.5 D.7
8.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )
A. B.
C. D.
9.如图是由四个小正方体叠成的一个几何体,它的左视图是( )
A. B. C. D.
10.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )
A.众数是90 B.中位数是90 C.平均数是90 D.极差是15
二、填空题(本大题共6个小题,每小题3分,共18分)
11.化简:________.
12.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留
13.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.
14.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
15.因式分解:3x2-6xy+3y2=______.
16.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.
三、解答题(共8题,共72分)
17.(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).
(1)当时,
①在图1中依题意画出图形,并求(用含的式子表示);
②探究线段,,之间的数量关系,并加以证明;
(2)当时,直接写出线段,,之间的数量关系.
18.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)
19.(8分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.
20.(8分)如图,,,,求证:。
21.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
22.(10分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.
(1)求抛物线的解析式;
(2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;
②当k= 时,点F是线段AB的中点;
(3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.
23.(12分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
24.如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
【详解】
解:向北和向南互为相反意义的量.
若向北走6km记作+6km,
那么向南走8km记作﹣8km.
故选:B.
【点睛】
本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
2、C
【解析】
分析:根据“无理数”的定义进行判断即可.
详解:
A选项中,因为,所以A选项中的数是有理数,不能选A;
B选项中,因为是无限循环小数,属于有理数,所以不能选B;
C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;
D选项中,因为,2是有理数,所以不能选D.
故选.C.
点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.
3、C
【解析】
根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.
【详解】
解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;
B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;
C、极差为9﹣4=5(吨),错误,故选项正确;
D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.
故选:C.
【点睛】
此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.
4、C
【解析】
:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C
5、A
【解析】
解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.
6、B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.
故选B.
考点:概率.
7、C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
中位数为:1.
故选C.
考点:众数;中位数.
8、A
【解析】
设身高GE=h,CF=l,AF=a,
当x≤a时,
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
∴,
∵a、h、l都是固定的常数,
∴自变量x的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
故选A.
9、A
【解析】
试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.
考点:简单组合体的三视图.
10、C
【解析】
由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:
【详解】
解:∵90出现了5次,出现的次数最多,∴众数是90;
∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;
∵平均数是(80×1+85×2+90×5+95×2)÷10=89;
极差是:95﹣80=1.
∴错误的是C.故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据平面向量的加法法则计算即可
【详解】
.
故答案为:
【点睛】
本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.
12、
【解析】
直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.
【详解】
由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.
故答案为6π.
【点睛】
本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.
13、
【解析】
先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.
【详解】
∵从中随意摸出两个球的所有可能的结果个数是12,
随意摸出两个球是红球的结果个数是6,
∴从中随意摸出两个球的概率=;
故答案为:.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
14、
【解析】
∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
∴其概率是=.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
15、3(x﹣y)1
【解析】
试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.
考点:提公因式法与公式法的综合运用
16、2
【解析】
【分析】接把点P(a,b)代入反比例函数y=即可得出结论.
【详解】∵点P(a,b)在反比例函数y=的图象上,
∴b=,
∴ab=2,
故答案为:2.
【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
三、解答题(共8题,共72分)
17、(1)①;②;(2)
【解析】
(1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
【详解】
(1)当时,
①画出的图形如图1所示,
∵为等边三角形,
∴.
∵为等边三角形的中线
∴是的垂直平分线,
∵为线段上的点,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
∴;
②;
如图2,延长到点,使得,连接,作于点.
∵,点在上,
∴.
∵点在的延长线上,,
∴.
∴.
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
即为底角为的等腰三角形.
∴.
∴.
(2)如图3,当时,
在上取一点使,
∵为等边三角形,
∴.
∵为等边三角形的中线,
∵为线段上的点,
∴是的垂直平分线,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
∴.
∴.
【点睛】
此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
18、(1)2;(2)宣传牌CD高(20﹣1)m.
【解析】
试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;
(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.
试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.
答:点B距水平面AE的高度BH是2米;
(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.
19、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
【解析】
分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
详解:(1)∵tan∠AOH==
∴AH=OH=4
∴A(-4,3),代入,得
k=-4×3=-12
∴反比例函数为
∴
∴m=6
∴B(6,-2)
∴
∴=,b=1
∴一次函数为
(2)
△AHO的周长为:3+4+5=12
点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
20、见解析
【解析】
据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.
【详解】
证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.
∵在△ABC和△AED中,
∴△ABC≌△AED(AAS).
【点睛】
此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角
21、(1)600(2)见解析
(3)3200(4)
【解析】
(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.(2分)
(2)如图;…(5分)
(3)8000×40%=3200(人).
答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)
(4)如图;
(列表方法略,参照给分).…(8分)
P(C粽)==.
答:他第二个吃到的恰好是C粽的概率是.…(10分)
22、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.
【解析】
(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.
(2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.
②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.
(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论
将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.
【详解】
(1)解:将点(-2,2)和(4,5)分别代入,得:
解得:
∴抛物线的解析式为:.
(2)①证明:过点B作BD⊥y轴于点D,
设B(m,),
∵BC⊥x轴,BD⊥y轴,F(0,2)
∴BC=,
BD=|m|,DF=
∴BC=BF
∴∠BFC=∠BCF
又BC∥y轴,∴∠OFC=∠BCF
∴∠BFC=∠OFC
∴FC平分∠BFO .
②
(说明:写一个给1分)
(3)存在点B,使△MBF的周长最小.
过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F
由(2)知B1F=B1N,BF=BE
∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN
△MBF的周长=MF+MB+BF=MF+MB+BE
根据垂线段最短可知:MN<MB+BE
∴当点B在点B1处时,△MBF的周长最小
∵M(3,6),F(0,2)
∴,MN=6
∴△MBF周长的最小值=MF+MN=5+6=11
将x=3代入,得:
∴B1(3,)
将F(0,2)和B1(3,)代入y=kx+b,得:
,
解得:
∴此时直线l的解析式为:.
【点睛】
本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.
23、(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【解析】
【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
(3)先判断出△AEP≌△FBP,即可得出结论.
【详解】(1)依题意作出图形如图①所示;
(2)EB是平分∠AEC,理由:
∵四边形ABCD是矩形,
∴∠C=∠D=90°,CD=AB=2,BC=AD=,
∵点E是CD的中点,
∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE,
∴∠AED=∠BEC,
在Rt△ADE中,AD=,DE=1,
∴tan∠AED==,
∴∠AED=60°,
∴∠BCE=∠AED=60°,
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴BE平分∠AEC;
(3)∵BP=2CP,BC==,
∴CP=,BP=,
在Rt△CEP中,tan∠CEP==,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP==,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,
∴△AEP≌△FBP,
∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.
24、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
福建省南平市邵武市四中学片区2023-2024学年八上数学期末监测模拟试题含答案: 这是一份福建省南平市邵武市四中学片区2023-2024学年八上数学期末监测模拟试题含答案,共8页。试卷主要包含了把分解因式,结果正确的是,无理数2﹣3在,分式与的最简公分母是,用科学记数法表示等内容,欢迎下载使用。
福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析: 这是一份福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列哪一个是假命题等内容,欢迎下载使用。
福建省邵武市四中学片区达标名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份福建省邵武市四中学片区达标名校2021-2022学年中考数学适应性模拟试题含解析,共18页。试卷主要包含了实数﹣5.22的绝对值是等内容,欢迎下载使用。