苏教版 (2019)必修 第一册8.2 函数与数学模型测试题
展开【基础】8.2函数与数学模型优质练习
一、单选题
1.果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知,结果取整数)( )
A.23天 B.33天 C.43天 D.50天
2.已知某种垃圾的分解率为,与时间(月)满足函数关系式(其中,为非零常数),若经过12个月,这种垃圾的分解率为10%,经过24个月,这种垃圾的分解率为20%,那么这种垃圾完全分解,至少需要经过( )(参考数据:)
A.48个月 B.52个月 C.64个月 D.120个月
3.我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之锤,日取其半,万世不竭”.用现代语言叙述为:一尺长的木棒,每天取其一半,永远也取不完.这样,每天剩下的部分都是前一天的一半,如果把“一尺之锤”看成单位“1”,那么x天后剩下的部分y与x的函数关系式为
A. B.
C. D.
4.牛顿冷却定律描述物体在常温环境下的温度变化:如果物体的初始温度为,则经过一定时间t分钟后的温度T满足,h称为半衰期,其中是环境温度.若℃,现有一杯80℃的热水降至75℃大约用时1分钟,那么水温从75℃降至45℃,大约还需要(参考数据:,)( )
A.9分钟 B.10分钟
C.11分钟 D.12分钟
5.下面对函数,与在区间上的递减情况说法正确的是( )
A.递减速度越来越慢,递减速度越来越快,递减速度比较平稳
B.递减速度越来越快,递减速度越来越慢,递减速度越来越快
C.递减速度越来越慢,递减速度越来越慢,递减速度比较平稳
D.递减速度越来越快,递减速度越来越快,递减速度越来越快
二、多选题
6.有一组实验数据如表所示:
则下列所给函数模型较不适合的有( )A. B.
C. D.
7.如图所示是某受污染的湖泊在自然净化过程中某种有害物质的剩留量y与净化时间t(月)的近似函数关系:的图象.有以下说法:其中正确的说法是( )
A.第4个月时,剩留量就会低于
B.每月减少的有害物质质量都相等
C.污染物每月的衰减率为
D.当剩留,,时,所经过的时间分别是,,,则
8.“双”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给与优惠:(1)如果购物总额不超过元,则不给予优惠;(2)如果购物总额超过元但不超过100元,可以使用一张5元优惠券;(3)如果购物总额超过 元但不超过元,则按标价给予折优惠;(4)如果购物总额超过元,其中元内的按第(3)条给予优惠,超过 元的部分给予折优惠.某人购买了部分商品,则下列说法正确的是( )
A.如果购物总额为78元,则应付款为73元
B.如果购物总额为228元,则应付款为205.2元
C.如果购物总额为368元,则应付款为294.4元
D.如果购物时一次性全部付款442.8元,则购物总额为516元
9.边际函数是经济学中一个基本概念,在圆防、圆学、环保和经济管理等许多微战都有十分广泛的应用,函数的边际函数定义为.某公司每月最多生产75台报警系统装置,生产台的收入函数(单位:元),其成本的数(单位:元),利润是收入与成本之差,设利润雨数为,则以下说法正确的是( )
A.取得最大值时每月产量为台
B.边际利润函数的表达式为
C.利润函数与边际利润函数不具有相同的最大值
D.边际利润函数说明随着产量的增加,每台利润与前一台利润差额在减少
三、填空题
10.下列选项分别是四种生意预期的获益关于时间的函数模型,从足够长远的角度看,使得公司获益最大的函数模型是______.①;②;③;④.
11.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数解析式是_________.
12.某景区套票原价300元/人,如果多名游客组团购买套票,则有如下两种优惠方案供选择:方案一:若人数不低于10,则票价打9折;若人数不低于50,则票价打8折;若人数不低于100,则票价打7折.不重复打折.方案二:按原价计算,总金额每满5000元减1000元.已知一个旅游团有47名游客,若可以两种方案搭配使用,则这个旅游团购票总费用的最小值为___________元.
四、解答题
13.某生物研究者于元旦在湖中放入一些风眼莲(其覆盖面积为),这些风眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼莲的覆盖面积为,凤眼莲的覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型与)可供选择.
(1)试判断哪个函数模型更合适并求出该模型的解析式;
(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积倍以上的最小月份.(参考数据:,).
14.今年上半年新冠肺炎全球大爆发.在某个时间点,某城市每周新增发病人数(单位:千人)与时间t(单位:周)之间近似满足,该城市从有人发病到发现人传人时,已有发病人数(千人),且当时,(千人).从第3周后,该城市采取封城的隔离措施,再经过两周之后,隔离措施产生效果,新增发病人数.
(Ⅰ)求该城市第5,6,7周新增发病人数;
(Ⅱ)随着该城市不断加大科研投入,治愈人数(单位:千人)与时间t(单位:周)存在关系,为保障每一位新增病人能及时入院治疗,该城市前九周(不考虑死亡人数的前提下)至少需要准备多少病人床位?(保留二位小数)(注:出院人数不少于新增发病人数时,总床位不再增加)
参考答案与试题解析
1.B
2.B
3.D
4.B
5.C
6.ABD
7.ACD
8.ABD
9.BCD
10.①
11.y=a(1+r)x,x∈N*
12.11710
13.(1)函数模型较为合适,且该函数模型的解析式为;(2)月份.
14.(Ⅰ)16;8;4;(Ⅱ)35.24(千人).
2020-2021学年第8章 函数应用8.2 函数与数学模型同步测试题: 这是一份2020-2021学年第8章 函数应用8.2 函数与数学模型同步测试题,共5页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
苏教版 (2019)必修 第一册第8章 函数应用8.2 函数与数学模型练习题: 这是一份苏教版 (2019)必修 第一册第8章 函数应用8.2 函数与数学模型练习题,共5页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
苏教版 (2019)必修 第一册8.2 函数与数学模型精练: 这是一份苏教版 (2019)必修 第一册8.2 函数与数学模型精练,共6页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。