05解答题-四川省泸州市五年(2018-2022)中考数学真题分类汇编
展开05解答题-四川省泸州市五年(2018-2022)中考数学真题分类汇编
九.二次函数综合题(共5小题)
21.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
(1)求a,c的值;
(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
22.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+4与两坐标轴分别相交于A,B,C三点.
(1)求证:∠ACB=90°;
(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.
①求DE+BF的最大值;
②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.
23.(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.
①求直线BD的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
24.(2019•泸州)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象经过点A(﹣2,0),C(0,﹣6),其对称轴为直线x=2.
(1)求该二次函数的解析式;
(2)若直线y=﹣x+m将△AOC的面积分成相等的两部分,求m的值;
(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x=2右侧.若以点E为直角顶点的△BED与△AOC相似,求点E的坐标.
25.(2018•泸州)如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.
(1)求a的值和直线AB的解析式;
(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;
(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.
一十.全等三角形的判定与性质(共4小题)
26.(2021•泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.
27.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.
28.(2019•泸州)如图,AB∥CD,AD和BC相交于点O,OA=OD.求证:OB=OC.
29.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.
一十一.平行四边形的性质(共1小题)
30.(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.
一十二.切线的性质(共2小题)
31.(2021•泸州)如图,△ABC是⊙O的内接三角形,过点C作⊙O的切线交BA的延长线于点F,AE是⊙O的直径,连接EC.
(1)求证:∠ACF=∠B;
(2)若AB=BC,AD⊥BC于点D,FC=4,FA=2,求AD•AE的值.
32.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.
(1)求证:∠C=∠AGD;
(2)已知BC=6,CD=4,且CE=2AE,求EF的长.
一十三.圆的综合题(共1小题)
33.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
一十四.相似三角形的判定与性质(共2小题)
34.(2019•泸州)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.
(1)求证:PC是⊙O的切线;
(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.
35.(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.
(1)求证:CO2=OF•OP;
(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.
一十五.解直角三角形的应用(共1小题)
36.(2020•泸州)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈,cos37°≈,tan37°≈).
一十六.解直角三角形的应用-仰角俯角问题(共1小题)
37.(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).
一十七.解直角三角形的应用-方向角问题(共3小题)
38.(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).
39.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.
(1)求观测点B与C点之间的距离;
(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
40.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛D位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.
(1)求sin∠ABD的值;
(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).
一十八.条形统计图(共1小题)
41.(2021•泸州)某合作社为帮助农民增收致富,利用网络平台销售当地的一种农副产品.为了解该农副产品在一个季度内每天的销售额,从中随机抽取了20天的销售额(单位:万元)作为样本,数据如下:
16 14 13 17 15 14 16 17 14 14
15 14 15 15 14 16 12 13 13 16
(1)根据上述样本数据,补全条形统计图;
(2)上述样本数据的众数是 ,中位数是 ;
(3)根据样本数据,估计这种农副产品在该季度内平均每天的销售额.
一十九.列表法与树状图法(共4小题)
42.(2022•泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:
劳动时间t(单位:小时)
频数
0.5≤t<1
12
1≤t<1.5
a
1.5≤t<2
28
2≤t<2.5
16
2.5≤t≤3
4
(1)m= ,a= ;
(2)若该校学生有640人,试估计劳动时间在2≤t≤3范围的学生有多少人?
(3)劳动时间在2.5≤t≤3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.
43.(2020•泸州)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行驶的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:
(1)求n的值,并补全频数分布直方图;
(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行驶的路程低于13km的该型号汽车的辆数;
(3)从被抽取的耗油1L所行驶路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.
44.(2019•泸州)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.
根据图中给出的信息,解答下列问题:
(1)该市5月1日至8日中午时气温的平均数是 ℃,中位数是 ℃;
(2)求扇形统计图中扇形A的圆心角的度数;
(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.
45.(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:
(1)求n的值;
(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;
(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
参考答案与试题解析
九.二次函数综合题(共5小题)
21.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
(1)求a,c的值;
(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:
解得:;
(2)由(2)知:抛物线解析式为:y=﹣x2+x+4,
设直线AB的解析式为:y=kx+b,
则,解得:,
∴AB的解析式为:y=2x+4,
设直线DE的解析式为:y=mx,
∴2x+4=mx,
∴x=,
当x=3时,y=3m,
∴E(3,3m),
∵△BDO与△OCE的面积相等,CE⊥OC,
∴•3•(﹣3m)=•4•,
∴9m2﹣18m﹣16=0,
∴(3m+2)(3m﹣8)=0,
∴m1=﹣,m2=(舍),
∴直线DE的解析式为:y=﹣x;
(3)存在,
B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:
设P(t,﹣t2+t+4),
①如图1,过点P作PH⊥y轴于H,
∵四边形BPGF是矩形,
∴BP=FG,∠PBF=∠BFG=90°,
∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,
∴∠PBH=∠OFB=∠CGF,
∵∠PHB=∠FCG=90°,
∴△PHB≌△FCG(AAS),
∴PH=CF,
∴CF=PH=t,OF=3﹣t,
∵∠PBH=∠OFB,
∴=,即=,
解得:t1=0(舍),t2=1,
∴F(2,0);
②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,
同①可得:NG=FM=3,OF=t﹣3,
∵∠OFB=∠FPM,
∴tan∠OFB=tan∠FPM,
∴=,即=,
解得:t1=,t2=(舍),
∴F(,0);
综上,点F的坐标为(2,0)或(,0).
22.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+4与两坐标轴分别相交于A,B,C三点.
(1)求证:∠ACB=90°;
(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.
①求DE+BF的最大值;
②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.
【解答】解:(1)y=﹣x2+x+4中,令x=0得y=4,令y=0得x1=﹣2,x2=8,
∴A(﹣2,0),B(8,0),C(0,4),
∴OA=2,OB=8,OC=4,AB=10,
∴AC2=OA2+OC2=20,BC2=OB2+OC2=80,
∴AC2+BC2=100,
而AB2=102=100,
∴AC2+BC2=AB2,
∴∠ACB=90°;
(2)①设直线BC解析式为y=kx+b,将B(8,0),C(0,4)代入可得:,
解得,
∴直线BC解析式为y=﹣x+4,
设第一象限D(m,+m+4),则E(m,﹣m+4),
∴DE=(+m+4)﹣(﹣m+4)=﹣m2+2m,BF=8﹣m,
∴DE+BF=(﹣m2+2m)+(8﹣m)
=﹣m2+m+8
=﹣(m﹣2)2+9,
∴当m=2时,DE+BF的最大值是9;
②由(1)知∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵DF⊥x轴于F,
∴∠FEB+∠CBA=90°,
∴∠CAB=∠FEB=∠DEC,
(一)当A与E对应时,
以点C,D,E为顶点的三角形与△AOG相似,只需=或=,
而G为AC中点,A(﹣2,0),C(0,4),
∴G(﹣1,2),OA=2,AG=,
由①知:DE=﹣m2+2m,E(m,﹣m+4),
∴CE==,
当=时,=,解得m=4或m=0(此时D与C重合,舍去)
∴D(4,6),
当=时,=,解得m=3或m=0(舍去),
∴D(3,),
∵在Rt△AOC中,G是AC中点,
∴OG=AG,
∴∠GAO=∠GOA,即∠CAB=∠GOA,
∴∠DEC=∠GOA,
(二)当O与E对应时,
以点C,D,E为顶点的三角形与△AOG相似,只需=或=,
∵OG=AG,
∴=与=答案相同,同理=与或=答案相同,
综上所述,以点C,D,E为顶点的三角形与△AOG相似,则D的坐标为(4,6)或(3,).
23.(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.
①求直线BD的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),
∴设抛物线的解析式为y=a(x+2)(x﹣4),
将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,
∴a=﹣,
∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;
(2)①如图1,
设直线AC的解析式为y=kx+b',
将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,
∴,
∴直线AC的解析式为y=2x+4,
过点E作EF⊥x轴于F,
∴OD∥EF,
∴△BOD∽△BFE,
∴,
∵B(4,0),
∴OB=4,
∵BD=5DE,
∴==,
∴BF=×OB=×4=,
∴OF=BF﹣OB=﹣4=,
将x=﹣代入直线AC:y=2x+4中,得y=2×(﹣)+4=,
∴E(﹣,),
设直线BD的解析式为y=mx+n,
∴,
∴,
∴直线BD的解析式为y=﹣x+2;
②Ⅰ、当点R在直线l右侧时,
∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),
∴抛物线的对称轴为直线x=1,
∴点Q(1,1),
如图2,设点P(x,﹣x2+x+4)(1<x<4),
过点P作PG⊥l于G,过点R作RH⊥l于H,
∴PG=x﹣1,GQ=﹣x2+x+4﹣1=﹣x2+x+3,
∵PG⊥l,
∴∠PGQ=90°,
∴∠GPQ+∠PQG=90°,
∵△PQR是以点Q为直角顶点的等腰直角三角形,
∴PQ=RQ,∠PQR=90°,
∴∠PQG+∠RQH=90°,
∴∠GPQ=∠HQR,
∴△PQG≌△QRH(AAS),
∴RH=GQ=﹣x2+x+3,QH=PG=x﹣1,
∴R(﹣x2+x+4,2﹣x)
由①知,直线BD的解析式为y=﹣x+2,
∴﹣(﹣x2+x+4)+2=2﹣x,
∴x=2或x=﹣4(舍),
当x=2时,y=﹣x2+x+4=﹣×4+2+4=4,
∴P(2,4),
Ⅱ、当点R在直线l左侧时,记作R',
设点P'(x,﹣x2+x+4)(1<x<4),
过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,
∴P'G'=x﹣1,G'Q=﹣x2+x+4﹣1=﹣x2+x+3,
同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),
∴R'H'=G'Q=﹣x2+x+3,QH'=P'G'=x﹣1,
∴R'(x2﹣x﹣2,x),
由①知,直线BD的解析式为y=﹣x+2,
∴﹣(x2﹣x﹣2)+2=x,
∴x=﹣1+或x=﹣1﹣(舍),
当x=﹣1+时,y=﹣x2+x+4=2﹣4,
∴P'(﹣1+,2﹣4),
即满足条件的点P的坐标为(2,4)或(﹣1+,2﹣4).
24.(2019•泸州)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象经过点A(﹣2,0),C(0,﹣6),其对称轴为直线x=2.
(1)求该二次函数的解析式;
(2)若直线y=﹣x+m将△AOC的面积分成相等的两部分,求m的值;
(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x=2右侧.若以点E为直角顶点的△BED与△AOC相似,求点E的坐标.
【解答】解:(1)由已知得:,解得:,
故抛物线的表达式为:y=x2﹣2x﹣6,
同理可得直线AC的表达式为:y=﹣3x﹣6;
(2)联立,解得:x=﹣,
直线y=﹣x+m与y轴的交点为(0,m),
S△AOC==6,
由题意得:×=3,
解得:m=﹣2或﹣10(舍去﹣10),
∴m=﹣2;
(3)∵OA=2,OC=6,∴,
①当△DEB∽△AOC时,则,
如图1,过点E作EF⊥直线x=2,垂足为F,过点B作BG⊥EF,垂足为G,
则Rt△BEG∽Rt△EDF,
则,则BG=3EF,
设点E(h,k),则BG=﹣k,FE=h﹣2,
则﹣k=3(h﹣2),即k=6﹣3h,
∵点E在二次函数上,故:h2﹣2h﹣6=6﹣3h,
解得:h=4或﹣6(舍去﹣6),
则点E(4,﹣6);
②当△BED∽△AOC时,,
过点E作ME⊥直线x=2,垂足为M,过点B作BN⊥ME,垂足为N,
则Rt△BEN∽Rt△EDM,则,则NB=EM,
设点E(p,q),则BN=﹣q,EM=p﹣2,
则﹣q=(p﹣2),解得:p=或(舍去);
故点E坐标为(4,﹣6)或(,).
25.(2018•泸州)如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.
(1)求a的值和直线AB的解析式;
(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;
(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.
【解答】解:(1)把点A(4,0)代入,得
0=a•42﹣(2a﹣)×4+3
解得
a=﹣
∴函数解析式为:y=
设直线AB解析式为y=kx+b
把A(4,0),B(0,3)代入
解得
∴直线AB解析式为:y=﹣
(2)由已知,
点D坐标为(m,﹣)
点E坐标为(m,﹣)
∴AC=4﹣m
DE=(﹣)﹣(﹣)=﹣
∵EC∥y轴
∴
∴AE=
∵∠DFA=∠DCA=90°,∠FBD=∠CEA
∴△DEF∽△AEC
∵S1=4S2
∴AE=2DE
∴
解得m1=,m2=4(舍去)
故m值为
(3)如图,过点G做GM⊥DC于点M,设点G的横坐标为n,
由(2)DE=﹣
同理HG=﹣
∵四边形DEGH是平行四边形
∴﹣=﹣
整理得:(n﹣m)[]=0
∵m≠n
∴m+n=4,即n=4﹣m
∴MG=n﹣m=4﹣2m
由已知△EMG∽△BOA
∴
∴EG=
∴▱DEGH周长L=2[﹣+]=﹣
∵a=﹣<0
∴m=﹣时,L最大.
∴n=4﹣=
∴G点坐标为(,),此时点E坐标为(,).
一十.全等三角形的判定与性质(共4小题)
26.(2021•泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.
【解答】证明:在△ABE与△ACD中
,
∴△ABE≌△ACD(ASA).
∴AD=AE.
∴AB﹣AD=AC﹣AE,
∴BD=CE.
27.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.
【解答】证明:∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB=AD,AC=AC,
∴△ABC≌△ADC(SAS),
∴BC=CD.
28.(2019•泸州)如图,AB∥CD,AD和BC相交于点O,OA=OD.求证:OB=OC.
【解答】证明:∵AB∥CD,
∴∠A=∠D,∠B=∠C,
在△AOB和△DOC中,,
∴△AOB≌△DOC(AAS),
∴OB=OC.
29.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.
【解答】证明:∵DA=BE,
∴DE=AB,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠C=∠F.
一十一.平行四边形的性质(共1小题)
30.(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.
【解答】证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=CB,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS),
∴DE=BF.
一十二.切线的性质(共2小题)
31.(2021•泸州)如图,△ABC是⊙O的内接三角形,过点C作⊙O的切线交BA的延长线于点F,AE是⊙O的直径,连接EC.
(1)求证:∠ACF=∠B;
(2)若AB=BC,AD⊥BC于点D,FC=4,FA=2,求AD•AE的值.
【解答】(1)证明:如图1,连接OC,
∵CF是⊙O的切线,
∴∠OCF=90°,
∴∠OCA+∠ACF=90°,
∵OE=OC,
∴∠E=∠OCE,
∵AE是⊙O的直径,
∴∠ACE=90°,
∴∠OCA+∠OCE=90°,
∴∠ACF=∠OCE=∠E,
∵∠B=∠E,
∴∠ACF=∠B;
(2)解:∵∠ACF=∠B,∠F=∠F,
∴△ACF∽△CBF,
∴=,
∵AF=2,CF=4,
∴,
∴BF=8,
∴AB=BC=8﹣2=6,AC=3,
∵AD⊥BC,
∴∠ADB=∠ACE=90°,
∵∠B=∠E,
∴△ABD∽△AEC,
∴=,即AE•AD=AB×AC=6×3=18.
32.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.
(1)求证:∠C=∠AGD;
(2)已知BC=6,CD=4,且CE=2AE,求EF的长.
【解答】(1)证明:如图,连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠C+∠CAB=90°,
∴∠C=∠ABD,
∵∠AGD=∠ABD,
∴∠AGD=∠C;
(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,
∴△ABC∽△BDC,
∴,
∴=,
∴AC=9,
∴AB==3,
∵CE=2AE,
∴AE=3,CE=6,
∵FH⊥AB,
∴FH∥BC,
∴△AHE∽△ABC,
∴,
∴==,
∴AH=,EH=2,
如图,连接AF,BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠AFH+∠BFH=∠AFH+∠FAH=90°,
∴∠FAH=∠BFH,
∴△AFH∽△FBH,
∴=,
∴=,
∴FH=,
∴EF=﹣2.
一十三.圆的综合题(共1小题)
33.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
【解答】(1)证明:连接OD.
∵DF是⊙O的切线,
∴OD⊥DF,
∵CD平分∠ACB,
∴=,
∴OD⊥AB,
∴AB∥DF;
(2)解:过点C作CH⊥AB于点H.
∵AB是直径,
∴∠ACB=90°,
∵BC=,AC=2,
∴AB===5,
∵S△ABC=•AC•BC=•AB•CH,
∴CH==2,
∴BH==1,
∴OH=OB﹣BH=﹣1=,
∵DF∥AB,
∴∠COH=∠F,
∵∠CHO=∠ODF=90°,
∴△CHO∽△ODF,
∴=,
∴=,
∴DF=.
一十四.相似三角形的判定与性质(共2小题)
34.(2019•泸州)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.
(1)求证:PC是⊙O的切线;
(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.
【解答】(1)证明:连接OC,如图1所示:
∵PC2=PB•PA,即=,
∵∠P=∠P,
∴△PBC∽△PCA,
∴∠PCB=∠PAC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
∵OC=OB,
∴∠OBC=∠OCB,
∴∠PCB+∠OCB=90°,
即OC⊥PC,
∴PC是⊙O的切线;
(2)解:连接OD,如图2所示:
∵PC=20,PB=10,PC2=PB•PA,
∴PA===40,
∴AB=PA﹣PB=30,
∵△PBC∽△PCA,
∴==2,
设BC=x,则AC=2x,
在Rt△ABC中,x2+(2x)2=302,
解得:x=6,即BC=6,
∵点D是的中点,AB为⊙O的直径,
∴∠AOD=90°,
∵DE⊥AC,
∴∠AEF=90°,
∵∠ACB=90°,
∴DE∥BC,
∴∠DFO=∠ABC,
∴△DOF∽△ACB,
∴==,
∴OF=OD=,即AF=,
∵EF∥BC,
∴==,
∴EF=BC=.
35.(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.
(1)求证:CO2=OF•OP;
(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.
【解答】(1)证明:∵PC是⊙O的切线,
∴OC⊥PC,
∴∠PCO=90°,
∵AB是直径,EF=FD,
∴AB⊥ED,
∴∠OFD=∠OCP=90°,
∵∠FOD=∠COP,
∴△OFD∽△OCP,
∴=,∵OD=OC,
∴OC2=OF•OP.
(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.
在Rt△POC中,∵PC2+OC2=PO2,
∴(4)2+r2=(r+4)2,
∴r=2,
∵CM==,
∵DC是直径,
∴∠CEF=∠EFM=∠CMF=90°,
∴四边形EFMC是矩形,
∴EF=CM=,
在Rt△OEF中,OF==,
∴EC=2OF=,
∵EC∥OB,
∴==,
∵GH∥CM,
∴==,
∴GH=.
一十五.解直角三角形的应用(共1小题)
36.(2020•泸州)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈,cos37°≈,tan37°≈).
【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,
在Rt△AMC中,∵∠BAC=45°,
∴AM=MC,
在Rt△BMC中,∵∠ABC=37°,tan∠ABC=,
∴BM==CM,
∵AB=70=AM+BM=CM+CM,
∴CM=30=DN,
在Rt△BDN中,∵∠DBN=60°,
∴BN===10(米),
∴CD=MN=MB+BN=×30+10=40+10(米),
答:C,D两点间的距离为(40+10)米.
一十六.解直角三角形的应用-仰角俯角问题(共1小题)
37.(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).
【解答】解:由题意知:BC=6AD,AE+BE=AB=90m
在Rt△ADE中,tan30°=,sin30°=
∴AE==AD,DE=2AD;
在Rt△BCE中,tan60°=,sin60°=,
∴BE==2AD,CE==4AD;
∵AE+BE=AB=90m
∴AD+2AD=90
∴AD=10(m)
∴DE=20m,CE=120m
∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,
∴∠DEC=90°
∴CD===20(m)
答:这两座建筑物顶端C、D间的距离为20m.
一十七.解直角三角形的应用-方向角问题(共3小题)
38.(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).
【解答】解:由题意得,∠CAB=∠ABC=45°,BC=8nmile.
∴∠C=90°,
∴AB==BC=8=16(nmile),
过D作DH⊥AB于H,
则∠AHD=∠BHD=90°,
在Rt△ADH中,∠ADH=30°,AD=10nmile,cos∠ADH=,
∴AH=AD=5nmile,DH=10•cos30°=10×=5,
∴BH=AB﹣AH=11nmile,
在Rt△BDH中,
BD===14(nmile),
答:B,D间的距离是14nmile.
39.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.
(1)求观测点B与C点之间的距离;
(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
【解答】解:(1)如图,过点C作CE⊥AB于点E,
根据题意可知:∠ACE=∠CAE=45°,AC=25海里,
∴AE=CE=25(海里),
∵∠CBE=30°,
∴BE=25(海里),
∴BC=2CE=50(海里).
答:观测点B与C点之间的距离为50海里;
(2)如图,作CF⊥DB于点F,
∵CF⊥DB,FB⊥EB,CE⊥AB,
∴四边形CEBF是矩形,
∴FB=CE=25(海里),CF=BE=25(海里),
∴DF=BD+BF=30+25=55(海里),
在Rt△DCF中,根据勾股定理,得
CD===70(海里),
∴70÷42=(小时).
答:救援船到达C点需要的最少时间是小时.
40.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛D位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.
(1)求sin∠ABD的值;
(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).
【解答】解:(1)过D作DE⊥AB于E,
在Rt△AED中,AD=20,∠DAE=45°,
∴DE=20×sin45°=20,
在Rt△BED中,BD=20,
∴sin∠ABD===;
(2)过D作DF⊥BC于F,
在Rt△BED中,DE=20,BD=20,
∴BE==40,
∵四边形BFDE是矩形,
∴DF=EB=40,BF=DE=20,
∴CF=BC﹣BF=30,
在Rt△CDF中,CD==50,
∴小岛C,D之间的距离为50nmile.
一十八.条形统计图(共1小题)
41.(2021•泸州)某合作社为帮助农民增收致富,利用网络平台销售当地的一种农副产品.为了解该农副产品在一个季度内每天的销售额,从中随机抽取了20天的销售额(单位:万元)作为样本,数据如下:
16 14 13 17 15 14 16 17 14 14
15 14 15 15 14 16 12 13 13 16
(1)根据上述样本数据,补全条形统计图;
(2)上述样本数据的众数是 14万元 ,中位数是 14.5万元 ;
(3)根据样本数据,估计这种农副产品在该季度内平均每天的销售额.
【解答】解:(1)由题目中的数据可得,
销售额为14万元的有6天,销售额为16万元的有4天,
补全的条形统计图如右图所示;
(2)由条形统计图可得,
样本数据的众数是14万元,中位数是(14+15)÷2=14.5(万元),
故答案为:14万元,14.5万元;
(3)=14.65(万元),
答:估计这种农副产品在该季度内平均每天的销售额是14.65万元.
一十九.列表法与树状图法(共4小题)
42.(2022•泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:
劳动时间t(单位:小时)
频数
0.5≤t<1
12
1≤t<1.5
a
1.5≤t<2
28
2≤t<2.5
16
2.5≤t≤3
4
(1)m= 80 ,a= 20 ;
(2)若该校学生有640人,试估计劳动时间在2≤t≤3范围的学生有多少人?
(3)劳动时间在2.5≤t≤3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.
【解答】解:(1)m=12÷15%=80,
a=80﹣12﹣28﹣16﹣4=20;
故答案为:80;20;
(2)640×=160(人),
所以估计劳动时间在2≤t≤3范围的学生有160人;
(3)画树状图为:
共有12种等可能的结果,其中一名男生和一名女生的结果数为8,
所以恰好抽到一名男生和一名女生的概率==.
43.(2020•泸州)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行驶的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:
(1)求n的值,并补全频数分布直方图;
(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行驶的路程低于13km的该型号汽车的辆数;
(3)从被抽取的耗油1L所行驶路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.
【解答】解:(1)12÷30%=40,即n=40,
B组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),
补全频数分布直方图如图:
(2)600×=150(辆),
即估计耗油1L所行驶的路程低于13km的该型号汽车的辆数为150辆;
(3)设行驶路程在12≤x<12.5范围内的2辆车记为为A、B,行驶路程在14≤x<14.5范围内的2辆车记为C、D,
画树状图如图:
共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,
∴抽取的2辆汽车来自同一范围的概率为=.
44.(2019•泸州)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.
根据图中给出的信息,解答下列问题:
(1)该市5月1日至8日中午时气温的平均数是 21 ℃,中位数是 21.5 ℃;
(2)求扇形统计图中扇形A的圆心角的度数;
(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.
【解答】解:(1)5月1日至8日中午时气温的平均数:(19+16+22+17+21+22+25+26)÷8=21℃
将8天的温度按低到高排列:16,17,19,21,22,22,25,26,因此中位数为=21.5℃,
故答案为21,21.5;
(2)因为低于20℃的天数有3天,则扇形统计图中扇形A的圆心角的度数360°×=135°,
答:扇形统计图中扇形A的圆心角的度数135°;
(3)设这个月5月1日至5日的5天中午12时的气温依次即为A1,A2,A3,A4,A5,
则抽到2天中午12时的气温,共有(A1A2),(A1A3),(A1A4),(A1A5),(A2A3),(A2A4),(A2A5),(A3A4),(A3A5),(A4A5)共10种不同取法,
其中抽到2天中午12时的气温均低于20℃有(A1A2),(A1A4),(A2A4)3种不同取法,
因此恰好抽到2天中午12时的气温均低于20℃的概率为.
45.(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:
(1)求n的值;
(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;
(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
【解答】解:(1)n=5÷10%=50;
(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),
1200×=240,
所以估计该校喜爱看电视的学生人数为240人;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,
所以恰好抽到2名男生的概率==.
05解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编: 这是一份05解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编,共10页。试卷主要包含了的函数图象如图,0﹣4sin45°+|﹣2|,解不等式组等内容,欢迎下载使用。
05解答题中档题-浙江台州市五年(2018-2022)中考数学真题分类汇编: 这是一份05解答题中档题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共12页。试卷主要包含了解方程组等内容,欢迎下载使用。
05解答题中档题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编: 这是一份05解答题中档题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编,共14页。试卷主要包含了解不等式组,,绘制出如下的统计图①和图②等内容,欢迎下载使用。