搜索
    上传资料 赚现金
    英语朗读宝

    专题56概率统计第一缉-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题56概率统计第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
    • 解析
      专题56概率统计第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
    专题56概率统计第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)第1页
    专题56概率统计第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)第2页
    专题56概率统计第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)第1页
    专题56概率统计第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)第2页
    专题56概率统计第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题56概率统计第一缉-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

    展开

    这是一份专题56概率统计第一缉-备战2022年高中数学联赛之历年真题分类汇编(2015-2021),文件包含专题56概率统计第一缉解析版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx、专题56概率统计第一缉原卷版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
    备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题56概率统计第一缉1.【2021年吉林预赛】某食品厂制作了4种不同的精美卡片,在该厂生产的每袋食品中都随机装入一张卡片,规定:如果收集齐了4种不同的卡片,便可获得奖品小明一次性购买该种食品6袋,那么小明获奖的概率是                                           .【答案】 【解析】总共有 种可能,其中获奖的情况可分为两类,第一类是有3袋食品的卡片相同的获奖情况(AAABCD) ,第二类是有两组2袋食品的卡片相同的获奖情况(AABBCD) .所以概率是 .2.【2021年全国高中数学联赛A卷一试】一颗质地均匀的正方体骰子,六个面上分别标有点数.随机地抛掷该骰子三次(各次抛掷结果相互独立),所得的点数依次为,则事件发生的概率为                                           .【答案】【解析】注意到,因此,掷得的三个点数满足条件,当且仅当最大数与最小数之差为3,的一个排列,其中.对每个,,各有3种不同的排列,当,各有6种不同的排列.因此,满足条件的点数种情况.从而所求概率为.3.【2021年全国高中数学联赛B卷一试】设的一个随机排列,则在9个数中既出现9又出现12的概率为                                           .【答案】【解析】一个随机排列满足要求当且仅当该排列中1,9两数相邻,2,63,4中至少有一对数相邻.现计算这样的排列的个数.设这些排列中2,6相邻的排列有个,3,4相邻的排列有,2,63,4两对数都相邻的排列有.为计算,先将1,9两数捆绑”,2,6两数捆绑”,并将它们与剩下的6个数进行排列,有种方式,又考虑到1,9的次序与2,6的次序,.类似可知.由容斥原理,.因此,所求概率为.4.【2020年福建预赛】在以凸18边形的顶点为顶点构成的三角形中,任取一个三角形,则所取的三角形与该18边形无公共边的概率为                                           .【答案】 【解析】以凸18边形的顶点为顶点的三角形个数为 对于凸18边形的任意一个顶点A,要取与凸18边形无公共边的三角形的一个顶点,则三角形的另两个顶点 不能为顶点 在凸18边形中的两条边的另两个顶点,只是其他15个顶点中的不相邻的两个顶点,共有 种不同的选取方法.故与原凸18边形无公共边的三角形个数为 因此,所求的概率为 .5.【2020年甘肃预赛】从 中任取三个不同的数.则这三个数构成等差数列的概率为          .【答案】 【解析】设取出的三个数为 由题意,ac奇偶性相同. 6.【2020年吉林预赛】两人轮流投掷色子,每人每次投掷两个,第一个使两个色子点数之和大于6者为胜,否则轮到另一个人投掷.则先投掷人获胜的概率为                                           .【答案】 【解析】同时投掷两个色子点数和大于6的概率为 ,从而,先投掷人的获胜概率为 .7.【2020年新疆预赛】由集合 中选出5个数,组成该体合的子集,从这些子集中任取一个,则取出的子集满足该子集中的5个数中任意两个数的和都不等于11拿概率为                                           .【答案】 【解析】易知由集合 中选出5个数,组成该体合的子集个数为: ;满足子集中的5个数中任意两个数的和都不等于11的子集个数,可以这样考虑:先把数字分成5组: ,由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成 ()这样的子集.所以概率为: .8.【2019年全国】在123…10中随机选出一个数a,在-1-2-3.…-10中随机选出一个数b,则a2+b3整除的概率为                                           .【答案】【解析】若a{12457810}..a{369}..a2+b3的倍数的概率为.9.【2019年江苏预赛】从中任取个不同的数,并从小到大排成一数列,此数列为等比数列的概率为  .答案【解析】满足条件的等比数列共有:.故所求概率.10.【2019年上海预赛】某侦查班有12名战士,其中报务员3名现将这12名战士随意分成三组,分别有3名、4名、5名战士则每一组均有1名报务员的概率为                                           .【答案】【解析】注意到,12名战士随意分成三组,每组分别有3名、4名、5名战士的分法共有,其中,满足每一组均有1名报务员的分法有.故每一组均有1名报务员的概率为.11.【2019年新疆预赛】随机取一个由01构成的8位数,它的偶数位数字之和与奇数位数字之和相等的概率为                                           .【答案】【解析】设a是满足题意的8位数,故知其偶数位上的1的个数和在奇数位上的1的个数相同,从而在奇数位上与偶数位上的1的个数可能为1234.注意到首位为1,下面分情况讨论:(i)奇数位上与偶数位上有1130,共有种可能;(i)奇数位上与偶数位上有2120.共有种可能;(i)奇数位上与偶数位上有3110,共有种可能;(iv)奇数位上与偶数位上有41,共有种可能;合计共有4+18+12+1=35个满足条件的自然数n.又因为01构成的8位数共有个,从而概率为.12.【2019年贵州预赛】已知m{11,13,15,17,19},n{2000,2001,……,2019}mn的个位数是1的概率为                              .【答案】【解析】当m=11,n{2000,2001,……,2019},mn的个位数都是1,此时有20种选法;m=13,n{2000,2004,2008,2012,2016},mn的个位数都是1,此时有5种选法;m=15,mn的个位数不可能为1,此时有0种选法;m=17,n{2000,2004,2008,2012,2016},mn的个位数都是1,此时有5种选法;m=19,n{2000,2002,2004,……,2018},mn的个位数都是1,此时有10种选法;综上,所求概率为.13.【2018年江苏预赛】将1234567899个数随机填入的方格表中,每个小方格恰填写一个数,且所填数各不相同,则使每行、每列所填数之和都是奇数的概率是________.【答案】.【解析】要使每行、每列所填数之和都是奇数,必须使每行或每列中要么只有一个奇数,要么三个全为奇数,故满足条件的填法共有.因此所求的概率为.故答案为:14.【2018年重庆预赛】从正九边形中任取三个顶点构成三角形,则正九边形的中心在三角形内的概率________【答案】【解析】如图,正9边形中包含中心的三角形有以下三种形状:对于(1),有3种情况;对于(2),有9种情况:对于(3);有18种情况;故所求概率为,故答案为:15.【2018年安徽预赛】从1210中随机抽取三个各不相同的数字,其样本方差的概率=_________.【答案】【解析】的样本方差,当且仅当是连续的正整数..故答案为:16.【2018年山东预赛】甲、乙两人轮流掷一枚硬币至正面朝上或者朝下,规定谁先掷出正面朝上为赢;前一场的输者,则下一场先掷.若第一场甲先掷,则甲赢得第场的概率为______【答案】        【解析】设甲赢得第场的概率为,在每一场先掷的人赢得的概率为所以由此得因此17.【2018年湖北预赛】一枚骰子连贯投掷四次,从第二次起每次出现的点数都不小于前一次出现的点数的概率为______.【答案】 【解析】分别是四次投掷骰子得到的点数,那么共有种不同的情况.如果从第二次起每次出现的点数都不小于前一次出现的点数,则.的值都相等,则种不同的情况;恰好取两个不同的值,则种不同的情况;恰好取3个不同的值,则种不同的情况;恰好取4个不同的值,则种不同的情况.因此,满足的情况共有(种).故所求的概率为.18.【2018年甘肃预赛】某市公租房房源位于三个小区,每位申请人只能申请其中一个小区的房子. 申请其中任意一个小区的房子是等可能的,则该市的任意4位申请人中,恰有2人申请小区房源的概率是______【答案】【解析】本题为古典概型,19.【2018年福建预赛】从如图所示的,由9个单位小方格组成的,方格表的16个顶点中任取三个顶点,则这三个点构成直角三角形的概率为______【答案】    【解析】先计算矩形的个数,再计算直角三角形的个数.如图所示,根据矩形特点,由这16个点可以构成个不同的矩形.又每个矩形可以分割成4个不同的直角三角形,且不同的矩形,分割所得的直角三角形也不同.因此,可得个直角顶点在矩形顶点的不同的直角三角形.再算直角顶点不在矩形顶点:1)在的矩形中,有直角顶点不在矩形顶点,边长分别为的直角三角形两个.而矩形横向、纵向各有6个,故共有个.2)在的矩形中,有直角顶点不在矩形顶点,边长分别为的直角三角形4个,边长分别为的直角三角形4个.而矩形横向、纵向各有两个,故共有个.所以,所求的概率20.【2018年全国】将123456随机排成一行,记为abcdef,则abc+def是偶数的概率为                                           .【答案】【解析】先考虑abc+def为奇数的情况,此时abcdef一奇一偶,若abc为奇数,则abc135的排列,进而def246的排列,这样有3×3=36种情况,由对称性可知,使abc+def为奇数的情况数为36×2=72.从而abc+def为偶数的概率为.21.【2018高中数学联赛A卷(第01试)】将123456随机排成一行,记为a,,cdef,则abc+def是偶数的概率为                                           .【答案】【解析】先考虑abc+def为奇数的情况,此时abcdef一奇一偶,abc为奇数,则abc135的排列,进而def246的排列,这样有种情况,由对称性可知,使abc+def为奇数的情况数为36×2=72.从而abc+def为偶数的概率为.22.【2018高中数学联赛B卷(第01试)】将123456随机排成一行,记为,bcdef,则abc+def是奇数的概率为                                           .【答案】【解析】当abc+def为奇数时,abcdef必为一奇一偶,abc为奇数,则abc135的排列,def246的排列,这样有3!×3!=36种情况.由对称性可知,满足条件的情况数为36×2=72.从而所求概率为.23.【2017高中数学联赛A卷(第01试)】在平面直角坐标系xOy中,点集K={(xy)|xy=101K中随机取出三个点,则这三点中存在两点之间距离为的概率是                                           .【答案】【解析】易知K中有9个点,故在K中随机取出三个点的方式数为.K中的点按如图标记为,其中有8对点之间的距离为.由对称性,考虑取两点的情况,则剩下的一个点有7种取法,这样有7×8=56个三点组(不计每组中三点的次序).对每个Ai(i=128)K中恰有两点与之距离为(这里下标按模8理解)因而恰有8个三点组被记了两次.从而满足条件的三点组个数为568=48,进而所求概率为.24.【2017高中数学联赛B卷(第01试)】在平面直角坐标系xOy中,点集K={(xy)|xy=101}.K中随机取出三个点,则这三个点两两之间距离均不超过2的概率为                                           .【答案】【解析】注意K中共有9个点,故在K中随机取出三个点的方式数为.当取出的三点两两之间距离不超过2时,有如下三种情况:(1)三点在一横线或一纵线上,有6种情况.(2)三点是边长为的等腰直角三角形的顶点,有4×4=16种情况.(3)三点是边长为的等腰直角三角形的顶点,其中,直角顶点位于(00)的有4个,直角顶点位于(±10)(0±1)的各有一个共有8种情况.综上可知,选出三点两两之间距离不超过2的情况数为6+16+8=30进而所求概率为.25.【2017年天津预赛】正2017边形内接于单位圆,任取它的两个不同顶点,的概率是       .【答案】【解析】提示:的充要条件是.对任意给定的,使得的点的取法有,因此,所求概率为.26.【2017年福建预赛】将8个三好生名额分配给甲、乙.丙、丁4个班级,每班至少1个名额,则甲班恰好分到2个名额的概率为                                          .【答案】【解析】提示:8个三好生名额分配给甲、乙、丙、丁4个班级,每班至少1个名额的不同分配方案有.(用隔板法:8个名额排成一排,在它们形成的7个空挡中揷人3块隔板,则每种揷人隔板的方式对应一种名额分配方式,反之亦然.)其中,甲班恰好分到2个名额的分配方案有.(相当于将6个名额分配给3个班级,每班至少1个名额.)所以,所求的概率为.27.【2017年湖北预赛】六个人围成一圈玩掷硬币游戏(硬币质地均匀),每人掷一次硬币.规定:硬币反面朝上的要表演节目,正面朝上的不用表演,则没有两个表演者相邻的概率为                                          .【答案】【解析】提示:所有情形共有,满足题设的表演者至多3.易知表演人数恰为且满足题设的情形种数分别为162,而恰有2人表演且满足题设的情形有.故所求概率为.28.【2017年陕西预赛】袋中装有2个红球,3个白球、个黄球,从中任取4个球,则其中三种颜色的球都有的概率是                                          .【答案】【解析】提示:从袋中的9个球中任取4,不同的取法共有(),其中三种颜色的球都有的取法有故所求概率.29.【2017年甘肃预赛】某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是                                          .【答案】【解析】提示.30.【2017年贵州预赛】掷一枚硬币,每次出现正面得1,出现反面得2.反复掷这枚硬币,则恰好得分的概率为                                          .【答案】【解析】提示:设得分的概率为得不到分的情况只有先得,再掷出反面,概率为.所以.31.【2017年安徽预赛】设正八面体的边长是1,则其两个平行表面之间的距离是        .【答案】【解析】提示:不妨设此正八面体的六个顶点的坐标是,其两个平行平面之间的距离.32.【2017年安徽预赛】设是正整数,随机选取的非空子集,不是空集的概率是       .【答案】【解析】提示:共有个子集,其中个子集满足个子集满足所求概率是33.【2017年广东预赛】从各位数字两两不等且和为10的所有四位数中任取两个数,2017被取到的可能性为                                          .【答案】【解析】提示:方程的整数解有且仅有,因此符合条件的四位数恰有:故所求概率为.34.【2017年广西预赛】一名篮球队员进行投篮练习.若第次投篮投中,则第次投篮投中的概率为;若第次投篮不中,则第次投篮投中的概率为.若该队员第1次投篮投中的概率为,则第4次投篮投中的概率为                                          .【答案】【解析】提示:设该队员投进第个球的概率为,投失的概率为,则投进第个球的概率为.35.【2017年新疆预赛】在边长为3的正方形中随机选取个点,其中与正方形的顶点距离小于1的点有,则用随机模拟的方法得到的圆周率的试验值为                                          .【答案】【解析】提示:由几何概型概率计算公式得,从而.
     

    相关试卷

    专题58初等数论第一缉-备战2022年高中数学联赛之历年真题分类汇编(2015-2021):

    这是一份专题58初等数论第一缉-备战2022年高中数学联赛之历年真题分类汇编(2015-2021),文件包含专题58初等数论第一缉解析版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx、专题58初等数论第一缉原卷版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    专题57概率统计第二缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021):

    这是一份专题57概率统计第二缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021),文件包含专题57概率统计第二缉解析版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx、专题57概率统计第二缉原卷版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    专题31数列第七缉-备战2022年高中数学联赛之历年真题分类汇编(2015-2021):

    这是一份专题31数列第七缉-备战2022年高中数学联赛之历年真题分类汇编(2015-2021),文件包含专题31数列第七缉解析版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx、专题31数列第七缉原卷版-备战2022年高中数学联赛之历年真题分类汇编2015-2021docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map