所属成套资源:备战2022年高考数学之学会解题全国名校精华分项版【长郡中学】
专题03+导数与应用-备战2022年高考数学之学会解题全国名校精华分项版【长郡中学】
展开
这是一份专题03+导数与应用-备战2022年高考数学之学会解题全国名校精华分项版【长郡中学】,文件包含专题03导数与应用解析版docx、专题03导数与应用原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
专题03 导数及其应用一、单选题1. 【2020届湖南省长沙市长郡中学高三下学期第四次适应性考试】若,则的大小关系是( )A. B.C. D.2. 【湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底】命题p:f(x)=x+alnx(a∈R)在区间[1,2]上单调递增;命题q:存在x∈[2,e],使得-e+4+2a≥0成立(e为自然对数的底数),若p且q为假,p或q为真,则实数a的取值范围是( )A.(-2,-) B.(-2,-)∪[-1,+∞)C.[-,-1) D.(2,-)∪[1,+∞)3. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(二)】曲线在点处的切线平行于直线,则点的坐标为A. B. C.和 D.4. 【湖南省长沙市长郡中学2021届高三下学期一模】已知实数满足,则大小关系为( )A. B.C. D.二、多选题1. 【湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底】若存在实常数和,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,,(为自然对数的底数),则( )A.在内单调递增;B.和之间存在“隔离直线”,且的最小值为;C.和之间存在“隔离直线”,且的取值范围是;D.和之间存在唯一的“隔离直线”.2. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(二)】已知函数,则下列结论正确的是A.是奇函数B.若是增函数,则C.当时,函数恰有两个零点D.当时,函数恰有两个极值点3. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(五)】已知函数,其中正确结论的是( )A.当时,有最大值;B.对于任意的,函数是上的增函数;C.对于任意的,函数一定存在最小值;D.对于任意的,都有.4. 【湖南省长沙市长郡中学2021届高三下学期二模】已知函数,则下列结论正确的是( )A.函数存在两个不同的零点B.函数既存在极大值又存在极小值C.当时,方程有且只有两个实根D.若时,,则的最小值为5. 【湖南省长沙市长郡中学2021届高三下学期月考(六)】关于函数,下列说法正确的是( )A.是的极小值;B.函数有且只有1个零点C.在上单调递减;D.设,则.6. 【湖南师范大学附属中学2021届高三下学期二模】若实数,则下列不等式中一定成立的是( )A. B.C. D.三、填空题1. 【湖南省长沙市长郡中学2019-2020学年高三下学期2月质量检测】曲线在处的切线方程为______.2. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)】设直线,分别是函数,图象上点,处的切线,与垂直相交于点,且,分别与轴相交于点,,的面积的取值范围是________.3. 【湖南省长沙市长郡中学2020届高三下学期第一次高考模拟】在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.4. 【湖南省长沙市长郡中学2020届高三下学期高考模拟卷(二)】设函数f (x)在(0,+∞)内可导,且f (ex)=x+ex,则=__________.5. 【湖南省长沙市长郡中学2021届高三下学期一模】若关于x的方程有解,则正数a的取值范围是___________.6. 【湖南师范大学附属中学2021届高三下学期三模】设s,t是不相等的两个正数,且,则的取值范围为___________.7. 【湖南师范大学附属中学2021届高三下学期三模】函数在处的切线方程为___________.8. 【湖南师范大学附属中学2021届高三下学期月考(七)】设函数=,记在区间上的最大值为,则当=________时,的最小值为________.四、解答题1. 【2020届湖南省长沙市长郡中学高三下学期第四次适应性考试】已知函数.(1)若函数,试研究函数的极值情况;(2)记函数在区间内的零点为,记,若在区间内有两个不等实根,证明:.2. 【湖南省长沙市长郡中学2019-2020学年高三上学期第二次月考】已知定义域为的单调减函数是奇函数,当时, .(1)求的解析式;(2)若对任意的,不等式恒成立,求实数的取值范围3. 【湖南省长沙市长郡中学2019-2020学年高三上学期第二次月考】已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,,且,证明:(为自然对数).4. 【湖南省长沙市长郡中学2019-2020学年高三下学期2月质量检测】已知函数,.(1)讨论函数的单调性;(2)当且时,求证:.5. 【湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底】已知函数f(x)=ex+,其中e是自然对数的底数.(1)若关于x的不等式mf(x)≤+m-1在(0,+∞)上恒成立,求实数m的取值范围;(2)已知正数a满足:存在x∈[1,+∞),使得f(x0)<a(-x03+3x0)成立.试比较与的大小,并证明你的结论.6. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(二)】已知函数,,为自然对数的底数.(1)若,证明:;(2)讨论的极值点个数.7. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)】设函数.(1)若,,求实数的取值范围;(2)已知函数存在两个不同零点,,求满足条件的最小正整数的值. 8. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(五)】已知函数,其中.(1)记,求的单调区间;(2)是否存在,使得对任意恒成立?若存在,请求出的最大值;若不存在,请说明理由.9. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(一)】已知点,,为坐标原点,设函数.(1)当时,判断函数在上的单调性;(2)若时,不等式恒成立,求实数的取值范围.10. 【湖南省长沙市长郡中学2020-2021学年高三上学期月考(一)】已知是偶函数.(1)求实数的值;(2)解不等式;(3)记,若对任意的成立,求实数的取值范围.11. 【湖南省长沙市长郡中学2020届高三下学期第一次高考模拟】设函数为的导函数.(Ⅰ)求的单调区间;(Ⅱ)当时,证明;(Ⅲ)设为函数在区间内的零点,其中,证明.12. 【湖南省长沙市长郡中学2020届高三下学期高考模拟卷(二)】已知函数,.(1)若,求证:有且只有两个零点;(2)不等式对恒成立,求实数m的取值范围.13. 【湖南省长沙市长郡中学2021届高三下学期保温卷二】已知函数.(1)当时,讨论函数的极值;(2)若存在,使得,求实数的取值范围.14. 【湖南省长沙市长郡中学2021届高三下学期二模】已知函数,(其中为常数,是自然对数的底数).(1)若,求函数在点处的切线方程;(2)若恒成立,求的取值范围.15. 【湖南省长沙市长郡中学2021届高三下学期考前冲刺卷】已知函数在处取得极值为的导数.(1)若,讨论的单调性;(2)若,的取值集合是,求中的最大整数值与最小整数值.(参考数据:,,)16. 【湖南省长沙市长郡中学2021届高三下学期一模】已知函数.(1)讨论函数的单调性;(2)若在上恒成立,求整数的最大值.17. 【湖南省长沙市长郡中学2021届高三下学期月考(六)】已知函数.(1)讨论函数零点的个数;(2)若函数存在两个零点,证明:.18. 【湖南省长沙市长郡中学2021届高三下学期月考(七)】已知函数的图象与直线相切.(1)求实数的值;(2)若存在实数满足且,求证:.19. 【湖南师范大学附属中学2021届高三下学期二模】已知函数.(1)当时,求在上的单调区间;(2)当时,讨论在上的零点个数.20. 【湖南师范大学附属中学2021届高三下学期三模】已知函数.(1)当时,试判断函数在上的单调性;(2)存在,,,求证:.21. 【湖南师范大学附属中学2021届高三下学期月考(七)】已知函数,是的导数,且.(1)求的值,并判断在上的单调性;(2)判断在区间内的零点个数,并加以证明.
相关试卷
这是一份专题13+复数-备战2022年高考数学之学会解题全国名校精华分项版【长郡中学】,文件包含专题13复数解析版docx、专题13复数原卷版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份专题12算法初步-备战2022年高考数学之学会解题全国名校精华分项版【长郡中学】,文件包含专题12算法初步原卷版docx、专题12算法初步解析版docx等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。
这是一份专题11概率与统计-备战2022年高考数学之学会解题全国名校精华分项版【长郡中学】,文件包含专题11概率与统计解析版docx、专题11概率与统计原卷版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。