2022年吉林省四平市铁西区中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:
最高气温(℃) | 25 | 26 | 27 | 28 |
天 数 | 1 | 1 | 2 | 3 |
则这组数据的中位数与众数分别是( )
A.27,28 B.27.5,28 C.28,27 D.26.5,27
2.若关于的一元二次方程的一个根是0,则的值是( )
A.1 B.-1 C.1或-1 D.
3.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
4.下列运算正确的是( )
A.a6÷a2=a3 B.(2a+b)(2a﹣b)=4a2﹣b2 C.(﹣a)2•a3=a6 D.5a+2b=7ab
5.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )
A. B.
C. D.
6.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )
A.0.13×105 B.1.3×104 C.1.3×105 D.13×103
7.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是( )
A.18π B.27π C.π D.45π
8.下列生态环保标志中,是中心对称图形的是( )
A. B. C. D.
9.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是( )
A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.
10.下列运算正确的是( )
A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,随机闭合开关,,中的两个,能让两盏灯泡和同时发光的概率为___________.
12.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.
13.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+= .
14.如果2,那么=_____(用向量,表示向量).
15.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
16.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.
三、解答题(共8题,共72分)
17.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
(Ⅰ)求发射台与雷达站之间的距离;
(Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?
18.(8分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:
(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
(3)画射线OP.
则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
19.(8分)(1)(问题发现)小明遇到这样一个问题:
如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
不变),试猜想AD与DE之间的数量关系,并证明你的结论.
(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
请直接写出△ABC与△ADE的面积之比.
20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.
21.(8分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
22.(10分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.
(1)求证:四边形CDBE为矩形;
(2)若AC=2,,求DE的长.
23.(12分)求不等式组 的整数解.
24.当=,b=2时,求代数式的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,
∴众数是28,
这组数据从小到大排列为:25,26,27,27,28,28,28
∴中位数是27
∴这周最高气温的中位数与众数分别是27,28
故选A.
2、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
【点睛】
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
3、C
【解析】
列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.
【详解】
画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为.
故选C.
4、B
【解析】
A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
D选项:两项不是同类项,故不能进行合并.
【详解】
A选项:a6÷a2=a4,故本选项错误;
B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
C选项:(-a)2•a3=a5,故本选项错误;
D选项:5a与2b不是同类项,不能合并,故本选项错误;
故选:B.
【点睛】
考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.
5、C
【解析】
根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
【详解】
解:∵DE∥BC,
∴=,BD≠BC,
∴≠,选项A不正确;
∵DE∥BC,EF∥AB,
∴=,EF=BD,=,
∵≠,
∴≠,选项B不正确;
∵EF∥AB,
∴=,选项C正确;
∵DE∥BC,EF∥AB,
∴=,=,CE≠AE,
∴≠,选项D不正确;
故选C.
【点睛】
本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
6、B
【解析】
试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将13000用科学记数法表示为:1.3×1.
故选B.
考点:科学记数法—表示较大的数
7、B
【解析】
先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
【详解】
如图1中,
∵等边△DEF的边长为2π,等边△ABC的边长为3,
∴S矩形AGHF=2π×3=6π,
由题意知,AB⊥DE,AG⊥AF,
∴∠BAG=120°,
∴S扇形BAG==3π,
∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
故选B.
【点睛】
本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
8、B
【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
故选B.
【考点】中心对称图形.
9、B
【解析】
∵关于x的不等式ax<b的解为x>-2,
∴a<0,且,即,
∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;
(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;
(3)解不等式ax>b可得:,即x<-2;
(4)解不等式可得:,即;
∴解集为x<2的是B选项中的不等式.
故选B.
10、D
【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.
【详解】A、2a﹣a=a,故本选项错误;
B、2a与b不是同类项,不能合并,故本选项错误;
C、(a4)3=a12,故本选项错误;
D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,
故选D.
【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.
【详解】
解:画树状图得:
由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,
∴能让两盏灯泡同时发光的概率,
故答案为:.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
12、1.
【解析】
试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案为1.
考点:等腰直角三角形;平行线的性质.
13、1
【解析】
试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.
故答案为1.
考点:根与系数的关系.
14、
【解析】
∵2(+)=+,∴2+2=+,∴=-2,
故答案为.
点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
15、1
【解析】
一组数据中出现次数最多的数据叫做众数,由此可得出答案.
【详解】
∵一组数据1,3,5,x,1,5的众数和中位数都是1,
∴x=1,
故答案为1.
【点睛】
本题考查了众数的知识,解答本题的关键是掌握众数的定义.
16、1
【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
【详解】
连结BD,如图,
∵DC=2AD,
∴S△ADB=S△BDC=S△BAC=×6=2,
∵AD⊥y轴于点D,AB⊥x轴,
∴四边形OBAD为矩形,
∴S矩形OBAD=2S△ADB=2×2=1,
∴k=1.
故答案为:1.
【点睛】
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
三、解答题(共8题,共72分)
17、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
【详解】
(Ⅰ)在中,,≈0.74,
∴.
答:发射台与雷达站之间的距离约为.
(Ⅱ)在中,,
∴.
∵在中,,
∴.
∴.
答:这枚火箭从到的平均速度大约是.
【点睛】
本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
18、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
【解析】
利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
【详解】
有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
所以∠POM=∠PON,
即射线OP为∠AOB的平分线.
故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
【点睛】
本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
19、(1)AD=DE;(2)AD=DE,证明见解析;(3).
【解析】
试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
试题解析:(10分)
(1)AD=DE.
(2)AD=DE.
证明:如图2,过点D作DF//AC,交AC于点F,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF//AC,
∴∠BDF=∠BFD=60°
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD.
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD.
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠FAD=∠EDC.
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3).
考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
20、(1)见解析(2)6
【解析】
(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.
(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
【详解】
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC
∴∠C+∠B=110°,∠ADF=∠DEC
∵∠AFD+∠AFE=110°,∠AFE=∠B,
∴∠AFD=∠C
在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,
∴△ADF∽△DEC
(2)∵四边形ABCD是平行四边形,
∴CD=AB=1.
由(1)知△ADF∽△DEC,
∴,
∴
在Rt△ADE中,由勾股定理得:
21、(1).(2)公平.
【解析】
试题分析:(1)首先根据题意结合概率公式可得答案;
(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
(2)列表得:
| A | B | C | D |
A |
| (A,B) | (A,C) | (A,D) |
B | (B,A) |
| (B,C) | (B,D) |
C | (C,A) | (C,B) |
| (C,D) |
D | (D,A) | (D,B) | (D,C) |
|
共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
∴P(两张都是轴对称图形)=,因此这个游戏公平.
考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.
22、 (1)见解析;(2)1
【解析】
分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.
详解:(1)证明:
∵ CD⊥AB于点D,BE⊥AB于点B,
∴ .
∴ CD∥BE.
又∵ BE=CD,
∴ 四边形CDBE为平行四边形.
又∵,
∴ 四边形CDBE为矩形.
(2)解:∵ 四边形CDBE为矩形,
∴ DE=BC.
∵ 在Rt△ABC中,,CD⊥AB,
可得 .
∵ ,
∴ .
∵ 在Rt△ABC中,,AC=2,,
∴ .
∴ DE=BC=1.
点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.
23、-1,-1,0,1,1
【解析】
分析:先求出不等式组的解集,然后求出整数解.
详解:,
由不等式①,得:x≥﹣1,
由不等式②,得:x<3,
故原不等式组的解集是﹣1≤x<3,
∴不等式组的整数解是:﹣1、﹣1、0、1、1.
点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法.
24、,6﹣3.
【解析】
原式=
=,
当a=,b=2时,
原式.
2024年吉林省四平市中考数学一模试卷(含解析): 这是一份2024年吉林省四平市中考数学一模试卷(含解析),共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年吉林省四平市三校中考三模数学试题(含解析): 这是一份2023年吉林省四平市三校中考三模数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年吉林省四平市三校中考数学三模试卷(含解析): 这是一份2023年吉林省四平市三校中考数学三模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。