2022届吉林省四平市铁西区中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是( )
A.2 B.1 C.-2 D.-1
2.如图,是的直径,是的弦,连接,,,则与的数量关系为( )
A. B.
C. D.
3.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )
A.11; B.6; C.3; D.1.
4.下列运算正确的是( )
A.(a2)4=a6 B.a2•a3=a6 C. D.
5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
A.28°,30° B.30°,28° C.31°,30° D.30°,30°
6.如图,在▱ABCD中,AB=2,BC=1.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
7.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
8.如图所示的正方体的展开图是( )
A. B. C. D.
9.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于( )
A.π B.2π C.3π D.4π
10.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
A.圆锥 B.圆柱 C.球 D.正方体
11.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为( )
A. B. C. D.
12.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()
A.4 B.8 C.2 D.-2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.
14.分解因式:2x2﹣8=_____________
15.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.
16.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)
17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
18.写出一个大于3且小于4的无理数:___________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.
20.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别
成绩x分
频数(人数)
第1组
50≤x<60
6
第2组
60≤x<70
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10
21.(6分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
22.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
请根据图中提供的信息,回答下列问题:
(1)a= %,并补全条形图.
(2)在本次抽样调查中,众数和中位数分别是多少?
(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?
23.(8分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.
24.(10分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.
(1)求证:△ABE≌△BCN;
(2)若N为AB的中点,求tan∠ABE.
25.(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.
(1)求点B坐标;
(1)求二次函数y=ax1+bx+c的解析式;
(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.
26.(12分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
七年级英语口语测试成绩统计表
成绩分
等级
人数
A
12
B
m
C
n
D
9
请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上包括B 级的学生人数.
27.(12分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D.
考点:根与系数的关系.
2、C
【解析】
首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.
【详解】
解:∵是的直径,
∴∠ADB=90°.
∴∠DAB+∠B=90°.
∵∠B=∠C,
∴∠DAB+∠C=90°.
故选C.
【点睛】
本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.
3、D
【解析】
∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,
∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,
∴上述四个数中,只有D选项中的1符合要求.
故选D.
点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.
4、C
【解析】
根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
【详解】
A、原式=a8,所以A选项错误;
B、原式=a5,所以B选项错误;
C、原式= ,所以C选项正确;
D、与不能合并,所以D选项错误.
故选:C.
【点睛】
本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
5、D
【解析】
试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
30出现了3次,出现的次数最多,则众数是30;
故选D.
考点:众数;算术平均数.
6、B
【解析】
分析:只要证明BE=BC即可解决问题;
详解:∵由题意可知CF是∠BCD的平分线,
∴∠BCE=∠DCE.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DCE=∠E,∠BCE=∠AEC,
∴BE=BC=1,
∵AB=2,
∴AE=BE-AB=1,
故选B.
点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
7、C
【解析】
从正面看到的图形如图所示:
,
故选C.
8、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
9、B
【解析】
根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.
【详解】
解:∵∠ACB=30°,
∴∠AOB=60°,
∴的长==2π,
故选B.
【点睛】
此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.
10、C
【解析】
【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.
【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;
B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;
C. 球的主视图只能是圆,故符合题意;
D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,
故选C.
【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.
11、D
【解析】
连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.
【详解】
解:连接EB,
由圆周角定理可知:∠B=90°,
设⊙O的半径为r,
由垂径定理可知:AC=BC=4,
∵CD=2,
∴OC=r-2,
∴由勾股定理可知:r2=(r-2)2+42,
∴r=5,
BCE中,由勾股定理可知:CE=2,
∴cos∠ECB==,
故选D.
【点睛】
本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.
12、C
【解析】
解:由题意得:,∴,∴x=±1.故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12.
【解析】
设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.
【详解】
设AD=a,则AB=OC=2a,
∵点D在反比例函数y=的图象上,
∴D(a,),
∴OA=,
过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,
∵△OEC的面积为12,OC=2a,
∴EN=,
∴EM=MN-EN=-=;
设ON=x,则NC=BM=2a-x,
∵AB∥OC,
∴△BME∽△ONE,
∴,
即,
解得x=,
∴E(,),
∵点E在在反比例函数y=的图象上,
∴·=k,
解得k=,
∵k>0,
∴k=12.
故答案为:12.
【点睛】
本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.
14、2(x+2)(x﹣2)
【解析】
先提公因式,再运用平方差公式.
【详解】
2x2﹣8,
=2(x2﹣4),
=2(x+2)(x﹣2).
【点睛】
考核知识点:因式分解.掌握基本方法是关键.
15、130
【解析】
分析:n边形的内角和是 因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.
详解:设多边形的边数为x,由题意有
解得
因而多边形的边数是18,
则这一内角为
故答案为
点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.
16、>
【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
【详解】
解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案为:>.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
17、
【解析】
解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
18、如等,答案不唯一.
【解析】
本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、,2
【解析】
试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.
试题解析:原式=·=
当a=0时,原式==2.
考点:分式的化简求值.
20、(1)①12,3. ②详见解析.(2).
【解析】
分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
详解:(1)①a=50﹣(6+8+14+10)=12,
中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
所以中位数落在第3组,
故答案为12,3;
②如图,
(2)×100%=44%,
答:本次测试的优秀率是44%;
(3)设小明和小强分别为A、B,另外两名学生为:C、D,
则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
所以小明和小强分在一起的概率为:.
点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
21、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
22、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
【解析】
(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
(2)根据众数和中位数的定义即可求出答案;
(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
【详解】
解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
该扇形所对圆心角的度数为310°×10%=31°,
参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:
故答案为10;
(2)抽样调查中总人数为100人,
结合条形统计图可得:众数是5,中位数是1.
(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
活动时间不少于1天的学生人数大约有5400人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、(1)证明见解析;(2).
【解析】
(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;
(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.
解:(1)∵AB=AC,∴∠B=∠C.
∵∠APD=∠B,∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∴AB•CD=CP•BP.
∵AB=AC,
∴AC•CD=CP•BP;
(2)∵PD∥AB,∴∠APD=∠BAP.
∵∠APD=∠C,∴∠BAP=∠C.
∵∠B=∠B,
∴△BAP∽△BCA,
∴.
∵AB=10,BC=12,
∴,
∴BP=.
“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
24、(1)证明见解析;(2)
【解析】
(1)根据正方形的性质得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA推出△ABE≌△BCN;(2)tan∠ABE=,根据已知求出AE与AB的关系即可求得tan∠ABE.
【详解】
(1)证明:∵四边形ABCD为正方形
∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°
∵CM⊥BE,
∴∠2+∠3=90°
∴∠1=∠3
在△ABE和△BCN中,
∴△ABE≌△BCN(ASA);
(2)∵N为AB中点,
∴BN=AB
又∵△ABE≌△BCN,
∴AE=BN=AB
在Rt△ABE中,tan∠ABE═.
【点睛】
本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE≌△BCN是解此题的关键.
25、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);
【解析】
(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.
【详解】
(1)∵y=x+1交x轴于点A(﹣4,0),
∴0=×(﹣4)+m,
∴m=1,
与y轴交于点B,
∵x=0,
∴y=1
∴B点坐标为:(0,1),
(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1
∴可设二次函数y=a(x﹣1)1
把B(0,1)代入得:a=0.5
∴二次函数的解析式:y=0.5x1﹣1x+1;
(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点
由Rt△AOB∽Rt△BOP1
∴,
∴,
得:OP1=1,
∴P1(1,0),
(Ⅱ)作P1D⊥BD,连接BP1,
将y=0.5x+1与y=0.5x1﹣1x+1联立求出两函数交点坐标:
D点坐标为:(5,4.5),
则AD=,
当D为直角顶点时
∵∠DAP1=∠BAO,∠BOA=∠ADP1,
∴△ABO∽△AP1D,
∴, ,
解得:AP1=11.15,
则OP1=11.15﹣4=7.15,
故P1点坐标为(7.15,0);
∴点P的坐标为:P1(1,0)和P1(7.15,0).
【点睛】
此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.
26、 (1)60人;(2)144°;(3)288人.
【解析】
等级人数除以其所占百分比即可得;
先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
总人数乘以A、B等级百分比之和即可得.
【详解】
解:本次被抽取参加英语口语测试的学生共有人;
级所占百分比为,
级对应的百分比为,
则扇形统计图中 C 级的圆心角度数为;
人,
答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
27、m的值是12.1.
【解析】
根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值
【详解】
由题意可得,
1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)
解得,m1=0(舍去),m2=12.1,
即m的值是12.1.
【点睛】
本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.
吉林省汪清县2022年中考数学考试模拟冲刺卷含解析: 这是一份吉林省汪清县2022年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022年吉林省通化市外国语学校中考数学考试模拟冲刺卷含解析: 这是一份2022年吉林省通化市外国语学校中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列计算中,正确的是,下列运算正确的是,下列说法中正确的是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。
2022年湖北黄冈中考数学考试模拟冲刺卷含解析: 这是一份2022年湖北黄冈中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,估计的值在等内容,欢迎下载使用。