


2022届四川省自贡市富顺中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60° B.45° C.15° D.90°
2.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
A.a=2,b=3 B.a=-2,b=-3
C.a=-2,b=3 D.a=2,b=-3
3.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
4.7的相反数是( )
A.7 B.-7 C. D.-
5.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为( )
A. B. C. D.
6.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A. B. C. D.
7.在,,则的值为( )
A. B. C. D.
8.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
9.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为( )
A.50m B.25m C.(50﹣)m D.(50﹣25)m
10.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )
A.∠NOQ=42° B.∠NOP=132°
C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补
二、填空题(本大题共6个小题,每小题3分,共18分)
11.关于 x 的方程 ax=x+2(a1) 的解是________.
12.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
13.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
14.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
15.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是 .
16.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 .
三、解答题(共8题,共72分)
17.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.
(1)求一台A型无人机和一台B型无人机的售价各是多少元?
(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.
①求y与x的关系式;
②购进A型、B型无人机各多少台,才能使总费用最少?
18.(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
19.(8分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.
(1)求证:∠A=2∠BDF;
(2)若AC=3,AB=5,求CE的长.
20.(8分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
21.(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.
(1)依题意补全图 1;
(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
22.(10分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=6,求DE的长.
23.(12分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):
(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.
(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: .(写一条即可)
(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为 公里.(直接写出结果,精确到个位)
24.某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
2、B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
3、D
【解析】
根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
【详解】
设每枚黄金重x两,每枚白银重y两,
由题意得:,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
4、B
【解析】
根据只有符号不同的两个数互为相反数,可得答案.
【详解】
7的相反数是−7,
故选:B.
【点睛】
此题考查相反数,解题关键在于掌握其定义.
5、C
【解析】
先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.
【详解】
如图,根据勾股定理得,BC==12,
∴sinA=.
故选C.
【点睛】
本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.
6、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
7、A
【解析】
本题可以利用锐角三角函数的定义求解即可.
【详解】
解:tanA=,
∵AC=2BC,
∴tanA=.
故选:A.
【点睛】
本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
8、B
【解析】
解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
根据作图过程可知:PB=CP,
∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
∵∠ABC=90°,∴PD∥AB.
∴E为AC的中点,∴EC=EA,∵EB=EC.
∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
∴正确的有①②④.
故选B.
考点:线段垂直平分线的性质.
9、C
【解析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
【详解】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
则AB=MN,AM=BN.
在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
则AB=MN=(50﹣)m.
故选C.
【点睛】
本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
10、C
【解析】
试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.
考点:角的度量.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.
详解:移项,得:ax﹣x=1,合并同类项,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=.故答案为x=.
点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.
12、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
【解析】
让横坐标、纵坐标为负数即可.
【详解】
在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
13、288°
【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
【详解】
解:如图所示,在Rt△SOA中,SO=9,SA=15;
则:
设侧面属开图扇形的国心角度数为n,则由 得n=288°
故答案为:288°.
【点睛】
本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.
14、5 1.
【解析】
∵一组数据:3,a,4,6,7,它们的平均数是5,
∴,
解得,,
∴=1.
故答案为5,1.
15、1
【解析】
根据平均数为10求出x的值,再由众数的定义可得出答案.
解:由题意得,(2+3+1+1+x)=10,
解得:x=31,
这组数据中1出现的次数最多,则这组数据的众数为1.
故答案为1.
16、2
【解析】
∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。
∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。
又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°。
∴Rt△DBE中,BE=2DE=2。
三、解答题(共8题,共72分)
17、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;
(2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.
【解析】
(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;
(2)①根据题意可以得到y与x的函数关系式;
②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.
【详解】
解:(1)设一台型无人机售价元,一台型无人机的售价元,
,
解得,,
答:一台型无人机售价元,一台型无人机的售价元;
(2)①由题意可得,
即y与x的函数关系式为;
②∵B型无人机的数量不少于A型无人机的数量的2倍,
,
解得,,
,
∴当时,y取得最小值,此时,
答:购进型、型无人机各台、台时,才能使总费用最少.
【点睛】
本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.
18、(1) A种钢笔每只15元 B种钢笔每只20元;
(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
(3) 定价为33元或34元,最大利润是728元.
【解析】
(1)设A种钢笔每只x元,B种钢笔每支y元,
由题意得 ,
解得: ,
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
由题意得:,
∴42.4≤z<45,
∵z是整数
z=43,44,
∴90-z=47,或46;
∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,
∵-4<0,∴W有最大值,∵a为正整数,
∴当a=3,或a=4时,W最大,
∴W最大==-4×(3-)²+729=728,30+a=33,或34;
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
19、(1)见解析;(2)1
【解析】
(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;
(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.
【详解】
(1)证明:连接AD,如图,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵EF为切线,
∴OD⊥DF,
∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,
∴∠BDF=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠OAD=∠BDF,
∵D是弧BC的中点,
∴∠COD=∠OAD,
∴∠CAB=2∠BDF;
(2)解:连接BC交OD于H,如图,
∵D是弧BC的中点,
∴OD⊥BC,
∴CH=BH,
∴OH为△ABC的中位线,
∴,
∴HD=2.5-1.5=1,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴四边形DHCE为矩形,
∴CE=DH=1.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.
20、(1)见解析;(2)见解析;(3)见解析,.
【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
【详解】
解:(1)如图所示;
(2)如图所示;(3)如图所示;CE=.
【点睛】
本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
21、(1)详见解析;(1)①详见解析;②BP=AB.
【解析】
(1)根据要求画出图形即可;
(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
【详解】
(1)解:补全图形如图 1:
(1)①证明:连接 BD,如图 1,
∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
∴AQ=AP,∠QAP=90°,
∵四边形 ABCD 是正方形,
∴AD=AB,∠DAB=90°,
∴∠1=∠1.
∴△ADQ≌△ABP,
∴DQ=BP,∠Q=∠3,
∵在 Rt△QAP 中,∠Q+∠QPA=90°,
∴∠BPD=∠3+∠QPA=90°,
∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
∴DP1+DQ1=1AB1.
②解:结论:BP=AB.
理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.
∵△ADQ≌△ABP,△ANQ≌△ACP,
∴DQ=PB,∠AQN=∠APC=45°,
∵∠AQP=45°,
∴∠NQC=90°,
∵CD=DN,
∴DQ=CD=DN=AB,
∴PB=AB.
【点睛】
本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
22、(1)证明见解析;(2).
【解析】
(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;
(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.
【详解】
(1)证明:∵BD是△ABC的角平分线,
∴∠ABD=∠DBE,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE;
∵BE=AF,
∴AF=DE;
∴四边形ADEF是平行四边形;
(2)解:过点E作EH⊥BD于点H.
∵∠ABC=60°,BD是∠ABC的平分线,
∴∠ABD=∠EBD=30°,
∴DH=BD=×6=3,
∵BE=DE,
∴BH=DH=3,
∴BE==,
∴DE=BE=.
【点睛】
此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.
23、(1)见解析;(2)步行距离越大,燃烧脂肪越多;(3)1.
【解析】
(1)依据手机图片的中的数据,即可补全表格;
(2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;
(3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离.
【详解】
解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;
4月6日的步行数为15638,步行距离为1.0公里,卡路里消耗为234千卡,燃烧脂肪30克;
(2)由图可得,步行距离越大,燃烧脂肪越多;
故答案为:步行距离越大,燃烧脂肪越多;
(3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为1公里.
故答案为:1.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
24、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
【解析】
(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
【详解】
(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
根据题意得:
方程两边同乘以,得
解得:
经检验,是原方程的解.
∴当时,.
答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
方案一:由甲工程队单独完成.所需费用为:(万元);
方案二:由乙工程队单独完成.所需费用为:(万元);
方案三:由甲乙两队合作完成.所需费用为:(万元).
∵∴应该选择甲工程队承包该项工程.
【点睛】
本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
2024年四川省自贡市富顺县+代寺学区中考模拟考试二模数学试题: 这是一份2024年四川省自贡市富顺县+代寺学区中考模拟考试二模数学试题,共4页。
2023年四川省自贡市富顺三中中考数学适应性试卷(含解析): 这是一份2023年四川省自贡市富顺三中中考数学适应性试卷(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年四川省自贡市富顺第三中学校中考适应性检测数学试题: 这是一份2023年四川省自贡市富顺第三中学校中考适应性检测数学试题,共4页。