相似综合(难)-寒假教案学案
展开一、知识梳理
1.比例线段的相关概念
黄金分割:把线段分成两条线段,且使是的比例中项,即,叫做把线段黄金分割,点叫做线段的黄金分割点,其中≈0.618.即 简记为:
注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形
2.三角形相似的判定方法
1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.
2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角
形与原三角形相似.
3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两
个三角形相似.简述为:两角对应相等,两三角形相似.
4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹
角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.
5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这
两个三角形相似.简述为:三边对应成比例,两三角形相似.
3.相似三角形的性质
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比.
(4)相似三角形面积的比等于相似比的平方.
注:相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等
4.位似图形有关的概念与性质及作法
1.如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形.
2. 这个点叫做位似中心,这时的相似比又称为位似比.
注:
(1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点.
(2) 位似图形一定是相似图形,但相似图形不一定是位似图形.
(3) 位似图形的对应边互相平行或共线.
5.相似三角形判定的基本模型
A字型 X字型 反A字型 反8字型
母子型 旋转型 双垂直 三垂直
二、巩固练习
1. 如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:
①;②;③.其中正确的是( )
A. ①②③ B. ① C. ①② D. ②③
2.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是___________ .
3.如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为________ .
4.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数 。
5.如图,将面积为32√2的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=2√,则AP的长为 ___________ .
6.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2( )
A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2
C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S2
7.问题1:如图①,在中,,是上一点(不与,重合),,交于点,连接.设的面积为,的面积为.
(1)当时, _________
(2)设,请你用含字母的代数式表示.
问题2:如图②,在四边形中,,,,是上一点(不与,重合),,交于点,连接.设,四边形的面积为,的面积为.请你利用问题1的解法或结论,用含字母的代数式表示.
8.如图,在△ABC中,∠ACB=90°.
(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
9.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD, 垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 ;
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;
(3)拓展与运用
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
10.在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,)射线,分别交直线于点,.
(1)如图1,当与重合时,求的度数;
(2)如图2,设与的交点为,当为的中点时,求线段的长;
(3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.
11.已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.
(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;
(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.
中考一轮综合复习导学案(16)全等与相似: 这是一份中考一轮综合复习导学案(16)全等与相似,共9页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。
初中数学苏科版九年级下册6.4 探索三角形相似的条件学案: 这是一份初中数学苏科版九年级下册6.4 探索三角形相似的条件学案,共6页。学案主要包含了学习目标 ,知识梳理,典例精讲,课堂小结与反思,巩固练习,课堂作业,课后练习等内容,欢迎下载使用。
中位线(难)学案无答案: 这是一份中位线(难)学案无答案,共11页。学案主要包含了知识梳理,典例精讲,巩固练习,课后作业等内容,欢迎下载使用。