备战中考初中数学导练学案50讲—第34讲平移、对称与旋转(讲练版)
展开备战中考初中数学导练学案50讲
第34讲 平移、对称与旋转
【疑难点拨】
1.轴对称与中心对称的区别:(1)轴对称图形的关键是寻找对称轴,两边图形折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合;(2)解答的关键是菱形是中心对称图形,并判断出阴影部分的面积等于菱形的面积的一半.
2.关于图形的轴对称变换及旋转变换,解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连结即可.
3. 轴对称变换解决折叠问题,首先折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换.
【基础篇】
一、选择题:
1. (2018·广西贺州·3分)下列图形中,属于中心对称图形的是( )
A. B. C. D.
2. (2018·辽宁省抚顺市)(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为( )
A.(5,3) B.(﹣1,﹣2) C.(﹣1,﹣1) D.(0,﹣1)
3. (2018·辽宁大连·3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )
A.90°﹣α B.α C.180°﹣α D.2α
4. (2018·广西梧州·3分)如图,在正方形ABCD中,A.B.C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是( )
A.(﹣6,2) B.(0,2) C.(2,0) D.(2,2)
5. (2018年四川省内江市)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )
A.(﹣4,﹣5) B.(﹣5,﹣4) C.(﹣3,﹣4) D.(﹣4,﹣3)
二、填空题:
6. (2018•乐山•3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为 .
7. (2018·广西贺州·3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是 .
8. (2018·云南省曲靖·3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018= 673 个单位长度.
三、解答与计算题:
9. (2018·湖北荆州·8分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:
(1)△AFG≌△AFP;
(2)△APG为等边三角形.
10. (2018·辽宁省阜新市)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;
(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;
(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).
【能力篇】
一、选择题:
11. (2018·广西梧州·3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是( )
A.30° B.35° C.40° D.45°
12. (2018·浙江临安·3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )
A.1 B.2 C.3 D.不能确定
13. (2018•广西桂林•3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为( )
A. 3 B. C. D.
二、填空题:
14. (2018·湖北十堰·3分)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为 .
15. (2018·浙江省台州·5分)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为 .
三、解答与计算题:
16. (2018·浙江宁波·10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
17. (2018·江苏常州·8分)如图,把△ABC沿BC翻折得△DBC.
(1)连接AD,则BC与AD的位置关系是 .
(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.
18. (2018年四川省南充市)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.
(1)求证:AE=C′E.
(2)求∠FBB'的度数.
(3)已知AB=2,求BF的长.
【探究篇】
19. (2018•莱芜•9分)已知△ABC中,AB=AC,∠BAC=90°,D.E分别是AB.AC的中点,将△ADE绕点A按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.
(1)求证:BD′=CE';
(2)如图2,当α=60°时,设AB与D′E′交于点F,求的值.
20. (2018·湖北江汉·10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 ;
探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
第34讲 平移、对称与旋转
【疑难点拨】
1.轴对称与中心对称的区别:(1)轴对称图形的关键是寻找对称轴,两边图形折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合;(2)解答的关键是菱形是中心对称图形,并判断出阴影部分的面积等于菱形的面积的一半.
2.关于图形的轴对称变换及旋转变换,解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连结即可.
3. 轴对称变换解决折叠问题,首先折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换.
【基础篇】
一、选择题:
1. (2018·广西贺州·3分)下列图形中,属于中心对称图形的是( )
A. B. C. D.
【解答】解:A.不是中心对称图形,故此选项错误;
B.不是中心对称图形,故此选项错误;
C.不是中心对称图形,故此选项错误;
D.是中心对称图形,故此选项正确,
故选:D.
2. (2018·辽宁省抚顺市)(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为( )
A.(5,3) B.(﹣1,﹣2) C.(﹣1,﹣1) D.(0,﹣1)
【分析】根据点A.点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.
【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),
∴平移规律为横坐标减3,纵坐标减2,
∵点B(2,1)的对应点的坐标为(﹣1,﹣1).
故选:C.
【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
3. (2018·辽宁大连·3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )
A.90°﹣α B.α C.180°﹣α D.2α
解:由题意可得:
∠CBD=α,∠ACB=∠EDB.
∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°.
∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α. 故选C.
4. (2018·广西梧州·3分)如图,在正方形ABCD中,A.B.C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是( )
A.(﹣6,2) B.(0,2) C.(2,0) D.(2,2)
【分析】首先根据正方形的性质求出D点坐标,再将D点横坐标加上3,纵坐标不变即可.
【解答】解:∵在正方形ABCD中,A.B.C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),
∴D(﹣3,2),
∴将正方形ABCD向右平移3个单位,则平移后点D的坐标是(0,2),
故选:B.
【点评】本题考查了正方形的性质,坐标与图形变化﹣平移,是基础题,比较简单.
5. (2018年四川省内江市)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )
A.(﹣4,﹣5) B.(﹣5,﹣4) C.(﹣3,﹣4) D.(﹣4,﹣3)
【考点】R4:中心对称;KW:等腰直角三角形;R7:坐标与图形变化﹣旋转.
【分析】先求得直线AB解析式为y=x﹣1,即可得出P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点公式,即可得到点A′的坐标.
【解答】解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴A(4,3),
设直线AB解析式为y=kx+b,则
,
解得,
∴直线AB解析式为y=x﹣1,
令x=0,则y=﹣1,
∴P(0,﹣1),
又∵点A与点A'关于点P成中心对称,
∴点P为AA'的中点,
设A'(m,n),则=0, =﹣1,
∴m=﹣4,n=﹣5,
∴A'(﹣4,﹣5),
故选:A.
【点评】本题考查了中心对称,等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.
二、填空题:
6. (2018•乐山•3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为 .
解:设点C所表示的数为x.
∵数轴上A.B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.
故答案为:﹣6.
7. (2018·广西贺州·3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是 .
【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
∴BC=B′C,
∴△BCB′是等腰直角三角形,
∴∠CBB′=45°,
∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,
由旋转的性质得∠A=∠B′A′C=65°.
故答案为:65°.
8. (2018·云南省曲靖·3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018= 673 个单位长度.
【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;
P0P4=2,P0P5=2,P0P6=2;
P0P7=3,P0P8=3,P0P9=3;
∵2018=3×672+2,
∴点P2018在正南方向上,
∴P0P2018=672+1=673,
故答案为:673.
三、解答与计算题:
9. (2018·湖北荆州·8分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:
(1)△AFG≌△AFP;
(2)△APG为等边三角形.
【解答】证明:(1)由折叠可得:M、N分别为AD.BC的中点,
∵DC∥MN∥AB,
∴F为PG的中点,即PF=GF,
由折叠可得:∠PFA=∠D=90°,∠1=∠2,
在△AFP和△AFG中,
,
∴△AFP≌△AFG(SAS);
(2)∵△AFP≌△AFG,
∴AP=AG,
∵AF⊥PG,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠2=∠3=30°,
∴∠2+∠3=60°,即∠PAG=60°,
∴△APG为等边三角形.
10. (2018·辽宁省阜新市)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;
(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;
(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).
【解答】解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)
∴A1(﹣4,﹣1),B1(﹣2,0);(4分)
(2)如图所示,则△A2B2C2为所求作的三角形,(6分)
(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2==4,∴点C经过的路径长:×2πr=2π.(8分)[来源:Zxxk.Com]
【能力篇】
一、选择题:
11. (2018·广西梧州·3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是( )
A.30° B.35° C.40° D.45°
【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.
【解答】解:连接BB′
∵△AB′C′与△ABC关于直线EF对称,
∴△BAC≌△B′AC′,
∵AB=AC,∠C=70°,
∴∠ABC=∠AC′B′=∠AB′C′=70°,
∴∠BAC=∠B′AC′=40°,
∵∠CAF=10°,
∴∠C′AF=10°,
∴∠BAB′=40°+10°+10°+40°=100°,
∴∠ABB′=∠AB′B=40°.
故选:C.
【点评】此题主要考查了轴对称图形的性质以及等腰三角形的性质,正确得出∠BAC度数是解题关键.
12. (2018·浙江临安·3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )
A.1 B.2 C.3 D.不能确定
【考点】梯形的性质和旋转的性质
【分析】如图作辅助线,利用旋转和三角形全等证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,然后得出三角形的面积.
【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,
∵CD以D为中心逆时针旋转90°至ED,
∴∠EDF+∠CDF=90°,DE=CD,
又∵∠CDF+∠CDG=90°,
∴∠CDG=∠EDF,
在△DCG与△DEF中,,
∴△DCG≌△DEF(AAS),
∴EF=CG,
∵AD=2,BC=3,
∴CG=BC﹣AD=3﹣2=1,
∴EF=1,
∴△ADE的面积是:×AD×EF=×2×1=1.
故选:A.
【点评】本题考查梯形的性质和旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.
13. (2018•广西桂林•3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为( )
A. 3 B. C. D.
【答案】C
【解析】分析:连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.
详解:连接BM,如图,
由旋转的性质得:AM=AF.
∵四边形ABCD是正方形,
∴AD=AB=BC=CD,∠BAD=∠C=90°,
∵ΔAEM与ΔADM关于AM所在的直线对称,
∴∠DAM=∠EAM.
∵∠DAM+∠BAM=∠FAE+∠EAM=90°,
∴∠BAM=∠EAF,
∴△AFE≌△AMB
∴FE=BM.
在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,
∴BM=
∴FE=.
故选C.
点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.
二、填空题:
14. (2018·湖北十堰·3分)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为 .
【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.
【解答】解:作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;
Rt△ABC中,∠BAC=90°,AB=3,AC=6,
∴BC==9,
S△ABC=AB•AC=BC•AF,
∴3×=9AF,
AF=2,
∴AA'=2AF=4,
∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,
∴∠A'=∠C,
∵∠AEA'=∠BAC=90°,
∴△AEA'∽△BAC,
∴,
∴,
∴A'E=,
即AD+DE的最小值是;
故答案为:.
【点评】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.
15. (2018·浙江省台州·5分)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为 (﹣2,5) .
【分析】如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.利用全等三角形的性质,平行四边形的性质求出OC.OD即可;
【解答】解:如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.
∵NK=MK,∠DNK=∠BMK,∠NKD=∠MKB,
∴△NDK≌△MBK,
∴DN=BM=OC=2,DK=BK,
在Rt△KBM中,BM=2,∠MBK=60°,
∴∠BMK=30°,
∴DK=BK=BM=1,
∴OD=5,
∴N(﹣2,5),
故答案为(﹣2,5)
【点评】本题考查坐标与图形变化,轴对称等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
三、解答与计算题:
16. (2018·浙江宁波·10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
【考点】旋转的性质、全等三角形的判定与性质
【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)
(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数.
【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
在△ACD与△BCE中,
AC=BC∠ACD=∠BCECD=CE
∴△ACD≌△BCE(SAS)
(2)∵∠ACB=90°,AC=BC,
∴∠A=45°,
由(1)可知:∠A=∠CBE=45°,
∵AD=BF,
∴BE=BF,
∴∠BEF=67.5°
【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.
17. (2018·江苏常州·8分)如图,把△ABC沿BC翻折得△DBC.
(1)连接AD,则BC与AD的位置关系是 BC⊥AB .
(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.
【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;
(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.
【解答】解:(1)如图,
连接AD交BC于O,
由折叠知,AB=BD,∠ACB=∠DBC,
∵BO=BO,
∴△ABO≌△DBO(SAS),
∴∠AOB=∠DOB,
∵∠AOB+∠DOB=180°,
∴∠AOB=∠DOB=90°,
∴BC⊥AD,
故答案为:BC⊥AD;
(2)添加的条件是AB=AC,
理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ACB=∠DBC=∠ABC=∠DCB,
∴AC∥BD,AB∥CD,
∴四边形ABDC是平行四边形.
【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.
18. (2018年四川省南充市)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.
(1)求证:AE=C′E.
(2)求∠FBB'的度数.
(3)已知AB=2,求BF的长.
【考点】R2:旋转的性质;LB:矩形的性质.
【分析】(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;
(2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;
(3)由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在直角三角形BB′H中,利用锐角三角函数定义求出BH的长,由BF=2BH即可求出BF的长.
【解答】(1)证明:∵在Rt△ABC中,AC=2AB,
∴∠ACB=∠AC′B′=30°,∠BAC=60°,
由旋转可得:AB′=AB,∠B′AC=∠BAC=60°,
∴∠EAC′=∠AC′B′=30°,
∴AE=C′E;
(2)解:由(1)得到△ABB′为等边三角形,
∴∠AB′B=60°,
∴∠FBB′=150°;
(3)解:由AB=2,得到B′B=B′F=2,∠B′BF=15°,
过B作BH⊥BF,
在Rt△BB′H中,cos15°=,即BH=2×=,
则BF=2BH=+.
【点评】此题考查了旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解本题的关键.
【探究篇】
19. (2018•莱芜•9分)已知△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC的中点,将△ADE绕点A按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.
(1)求证:BD′=CE';
(2)如图2,当α=60°时,设AB与D′E′交于点F,求的值.
【分析】(1)首先依据旋转的性质和中点的定义证明AD′=AE′,然后再利用SAS证明△BD′A≌△CE′A,最后,依据全等三角形的性质进行证明即可;
(2)连接DD′,先证明△ADD′为等边三角形,然后再证明△△ABD′为直角三角形,接下来,再证明△BFD′∽△AFE′,最后,依据相似三角形的性质求解即可.
【解答】解:(1)证明:∵AB=AC,D、E分别是AB、AC的中点,
∴AD=BD=AE=EC.
由旋转的性质可知:∠DAD′=∠EAE′=α,AD′=AD,AE′=AE.
∴AD′=AE′,
∴△BD′A≌△CE′A,
∴BD′=CE′.
(2)连接DD′.
∵∠DAD′=60°,AD=AD′,
∴△ADD′是等边三角形.
∴∠ADD′=∠AD′D=60°,DD′=DA=DB.
∴∠DBD′=∠DD′B=30°,
∴∠BD′A=90°.
∵∠D′AE′=90°,
∴∠BAE′=30°,
∴∠BAE′=∠ABD′,
又∵∠BFD′=∠AFE′,
∴△BFD′∽△AFE′,
∴.
∵在Rt△ABD′中,tan∠BAD′==,
∴=.
【点评】本题主要考查的是全等三角形的判定和性质、相似三角形的性质和判定、旋转的性质,发现△BFD′∽△AFE′是解题的关键.
20. (2018·湖北江汉·10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 BC=DC+EC ;
探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;
(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.
【解答】解:(1)BC=DC+EC,
理由如下:∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE,
∴BD=CE,
∴BC=BD+CD=EC+CD,
故答案为:BC=DC+EC;
(2)BD2+CD2=2AD2,
理由如下:连接CE,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B,
∴∠DCE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,又AD=AE,
∴BD2+CD2=2AD2;
(3)作AE⊥AD,使AE=AD,连接CE,DE,
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAD′,
在△BAD与△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE==6,
∵∠DAE=90°,
∴AD=AE=DE=6.
备战中考初中数学导练学案50讲—第48讲 尺规作图(讲练版): 这是一份备战中考初中数学导练学案50讲—第48讲 尺规作图(讲练版),共29页。学案主要包含了疑难点拨等内容,欢迎下载使用。
备战中考初中数学导练学案50讲—第40讲动态问题(讲练版): 这是一份备战中考初中数学导练学案50讲—第40讲动态问题(讲练版),共43页。学案主要包含了疑难点拨,参考答案等内容,欢迎下载使用。
备战中考初中数学导练学案50讲—第24讲菱形(讲练版): 这是一份备战中考初中数学导练学案50讲—第24讲菱形(讲练版),共33页。学案主要包含了疑难点拨等内容,欢迎下载使用。